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Preface

These are lecture notes accompanying the course GR8201, “Topics in Theoretical Statistics:
Empirical Bayes” that was taught at the Department of Statistics, Columbia University in
Spring 2023.

We thank Arnab Auddy, Casey Bradshaw, Fangyi Chen, Maria-Cristiana Girjau, Russell
Kunes, Zhenyuan Liu, Jonas Mikhaeil, and Yizi Zhang for providing feedback on these lecture
notes.
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1 Introductory formal perspectives on
empirical Bayes

Our first goal is to demonstrate what’s different in the empirical Bayes problem compared to
more classical statistical decision theory. In other words, we will get a theoretical glimpse of
the new possibilities presented by the empirical Bayes approach. In the next lecture we will
see the relevance of these results to problems in applications.

This chapter will largely follow the three seminal papers of Herbert Robbins, who introduced
the term “empirical Bayes” (Robbins 1951, 1956, 1964).

You may find an eloquent and beautiful introduction to empirical Bayes (and particularly its
origins in Robbins (1951)) by Herbert Robbins himself in the following video:

https://youtu.be/id6YSycD5lc

1.1 Simple statistical decision problems

A simple statistical decision problem consists of the following ingredients:

Definition 1.1 (Simple statistical decision problem).

A) Unknown parameter 𝜃 ∈ Θ.

B) Observed random variable 𝑍 ∼ 𝑝(⋅ ∣ 𝜃), where 𝑍 ∈ 𝒵. 𝑝(⋅ ∣ 𝜃) is a density with respect
to a measure 𝜆 on 𝒵. 𝜆 is typically the counting measure on 𝒵 = ℕ≥0 or the Lebesgue
measure on 𝒵 = ℝ. [In the empirical Bayes setting, 𝑝(⋅ ∣ 𝜃) is often called the likelihood
or the noise distribution.]

C) Possible decisions 𝑡 ∈ 𝒯.

D) Loss ℓ(𝑡, 𝜃) that is incurred by decision 𝑡 when the true parameter is 𝜃.
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1.1.1 The risk function

The statistician’s goal is to choose a data-driven decision 𝑡 = 𝑡(𝑍), that is, a decision that
depends on the observed random variable 𝑍, such that the risk (=̂ expected loss)

𝑅(𝑡(⋅), 𝜃) = 𝔼𝜃 [ℓ(𝑡(𝑍), 𝜃)] (1.1)

is as small as possible. Note that by 𝔼𝜃 we denote an expectation with respect to 𝑍 ∼ 𝑝(⋅ ∣ 𝜃)
with 𝜃 fixed. It is well known that seeking 𝑡(⋅) that minimizes Eq. 1.1 is not a well-defined
task, i.e., there is no uniformly (over 𝜃) best decision rule 𝑡(⋅) (Erich Leo Lehmann and Casella
1998, chap. 1.1). Hence one needs to find a way to collapse Eq. 1.1 into a single number (or
alternatively to constrain the decision rules under consideration).

1.1.2 The Bayesian approach

In the Bayesian approach the statistician further posits that 𝜃 ∼ 𝐺 for a known distribution
𝐺, the prior. Then, it is natural to seek a rule 𝑡(⋅) such that the risk 𝑅(𝑡(⋅), 𝜃) integrated over
𝐺 is as small as possible:

𝑅(𝑡(⋅), 𝐺) = 𝔼𝐺 [ℓ(𝑡(𝑍), 𝜃)] = 𝔼𝐺 [𝑅(𝑡(⋅), 𝜃)] = ∫ 𝑅(𝑡(⋅), 𝜃)𝑑𝐺(𝜃) (1.2)

The optimal decision is called the Bayes decision 𝑡𝐺(⋅) and its risk is called the Bayes risk
𝑅(𝐺), that is:

𝑡𝐺(⋅) ∈ argmin
𝑡(⋅)

{𝑅(𝑡(⋅), 𝐺)} , 𝑅(𝐺) = 𝑅(𝑡𝐺(⋅), 𝐺) = inf
𝑡(⋅)

{𝑅(𝑡(⋅), 𝐺)} .

In the Bayesian approach, typically one can base optimal decisions on the posterior distribution
of 𝜃 given 𝑍. The posterior distribution of 𝜃 given 𝑍 = 𝑧 has 𝑑𝐺(𝜃)-density 𝑝(𝑧 ∣ 𝜃)/𝑓𝐺(𝑧)𝑑𝐺(𝜃),
where 𝑓𝐺(⋅) is the marginal density of 𝑍, i.e.,

𝑓𝐺(𝑧) = ∫ 𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃). (1.3)

When 𝐺 has a density 𝑔 with respect to a measure 𝜈, then we write the following for the
(𝑑𝜈)-density of the posterior distribution of 𝜃 given 𝑍 = 𝑧,

𝑝𝐺(𝜃 ∣ 𝑧) = 𝑝(𝑧 ∣ 𝜃)
𝑓𝐺(𝑧) 𝑔(𝜃). (1.4)

The optimal 𝑡𝐺(𝑧) can typically be computed by minimizing the posterior risk, that is the
expectation of the loss with respect to the posterior Eq. 1.4.
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Proposition 1.1. Suppose that for all 𝑧 ∈ 𝒵, there exists 𝑡 = 𝑡𝑧 ∈ 𝒯 that minimizes
𝔼𝐺 [ℓ(𝑡, 𝜃) ∣ 𝑍 = 𝑧] over all 𝑡 ∈ 𝒯. Then the Bayes decision is given by:

𝑡𝐺(𝑧) = argmin
𝑡∈𝒯

{𝔼𝐺 [ℓ(𝑡, 𝜃) ∣ 𝑍 = 𝑧]} .

Proof. Write
𝑡∗(𝑧) = argmin

𝑡∈𝒯
{𝔼𝐺 [ℓ(𝑡, 𝜃) ∣ 𝑍 = 𝑧]} .

We need to prove that the above minimizes the risk, so that 𝑡𝐺(⋅) = 𝑡∗(⋅) indeed provides a
Bayes optimal decision. To this end, take any other decision ̃𝑡(⋅). Then:

𝑅(𝑡∗(⋅), 𝐺) = 𝔼𝐺 [ℓ(𝑡∗(𝑍), 𝜃)]
= 𝔼𝐺 [𝔼𝐺 [ℓ(𝑡∗(𝑍), 𝜃) ∣ 𝑍]]

= 𝔼𝐺 [inf
𝑡∈𝑡

𝔼𝐺 [ℓ(𝑡, 𝜃) ∣ 𝑍]]

≤ 𝔼𝐺 [𝔼𝐺 [ℓ( ̃𝑡(𝑍), 𝜃) ∣ 𝑍]]
= 𝑅( ̃𝑡(⋅), 𝐺).

Since ̃𝑡(⋅) was arbitrary, we conclude.

Proposition 1.2. Suppose 𝜃 ∼ 𝐺 and 𝑍 ∣ 𝜃 ∼ 𝑝(⋅ ∣ 𝜃).

1. Suppose the decision space is equal to the parameter space, 𝒯 = Θ, and we seek to
estimate 𝜃 in squared error, that is, ℓ(𝑡, 𝜃) = (𝑡 − 𝜃)2. Suppose further that 𝔼𝐺 [𝜃2] < ∞.
Then the Bayes-optimal decision is given by:

𝑡𝐺(𝑧) = 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] .

2. Suppose that Θ = {𝜃𝑎, 𝜃𝑏} consists of only two elements and that we need to choose
between 𝜃𝑎 and 𝜃𝑏, that is 𝒯 = {𝜃𝑎, 𝜃𝑏} with loss ℓ(𝑡, 𝜃) = 1(𝑡 ≠ 𝜃). Then a Bayes-
optimal decision is given by:

𝑡𝐺(𝑧) = {𝜃𝑏, if 𝑝𝐺(𝜃𝑏 ∣ 𝑧) > 𝑝𝐺(𝜃𝑎 ∣ 𝑧)
𝜃𝑎, otherwise

.

3. Let 𝜃∗ ∈ Θ and suppose we seek to disambiguate between the following hypotheses: 𝐻≤ ∶
𝜃 ≤ 𝜃∗ and 𝐻> ∶ 𝜃 > 𝜃∗. Our decision space is 𝒯 = {𝐻≤, 𝐻>}. Suppose furthermore that
we incur 0 loss when we choose correctly between 𝐻≤ and 𝐻>, and a loss proportional to
|𝜃 − 𝜃∗| otherwise. In other words, our loss is:

ℓ(𝑡, 𝜃) = (1(𝑡 = 𝐻≤, 𝜃 > 𝜃∗) + 1(𝑡 = 𝐻<, 𝜃 ≥ 𝜃∗)) |𝜃 − 𝜃∗| .
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If 𝔼𝐺 [|𝜃|] < ∞, then a Bayes-optimal decision is given by:

𝑡𝐺(𝑧) = {𝐻>, if 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] > 𝜃∗

𝐻≤, otherwise
.

Proof. For 1., we note that:

𝔼𝐺 [(𝜃 − 𝑡)2 ∣ 𝑍 = 𝑧] = Var𝐺 [𝜃 ∣ 𝑍 = 𝑧] + (𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] − 𝑡)2 .

Hence the above is minimized at 𝑡 = 𝑡𝐺(𝑧) = 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] as claimed.

For 2.:

𝔼𝐺 [ℓ(𝑡, 𝜃) ∣ 𝑍 = 𝑧] = ℙ𝐺[𝑡 ≠ 𝜃 ∣ 𝑍 = 𝑧] = 𝑝𝐺(𝜃𝑎 ∣ 𝑧)1(𝑡 = 𝜃𝑏) + 𝑝𝐺(𝜃𝑏 ∣ 𝑧)1(𝑡 = 𝜃𝑎).

Hence the posterior risk will either be 𝑝𝐺(𝜃𝑏 ∣ 𝑧) for 𝑡 = 𝜃𝑎 and 𝑝𝐺(𝜃𝑎 ∣ 𝑧) for 𝑡 = 𝜃𝑏. Thus the
claimed rule 𝑡𝐺(𝑧) minimizes the posterior risk.

For 3., it is convenient to first note the following

ℓ(𝐻>, 𝜃) − ℓ(𝐻≤, 𝜃) = 𝜃∗ − 𝜃.

Hence
𝔼𝐺 [ℓ(𝐻>, 𝜃) ∣ 𝑍 = 𝑧] − 𝔼𝐺 [ℓ(𝐻≤, 𝜃) ∣ 𝑍 = 𝑧] = 𝜃∗ − 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] . (1.5)

Hence e.g., 𝔼𝐺 [ℓ(𝐻>, 𝜃) ∣ 𝑍 = 𝑧] < 𝔼𝐺 [ℓ(𝐻≤, 𝜃) ∣ 𝑍 = 𝑧] when 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] > 𝜃∗ which justi-
fies the suggested rule.

1.1.3 The frequentist approach, particularly: minimax decisions

In the minimax approach one seeks a decision rule 𝑡minmax(⋅) such that:

𝑡minmax(⋅) ∈ argmin
𝑡(⋅)

sup
𝜃∈Θ

{𝑅(𝑡(⋅), 𝜃)} . (1.6)

The worst-case risk of 𝑡minmax(⋅) is called the minimax risk.

Exercise 1.1. Prove the following statements:

1. For any decision function 𝑡(⋅), it holds that

sup
𝜃∈Θ

{𝑅(𝑡(⋅), 𝜃)} = sup
𝐺

{𝑅(𝑡(⋅), 𝐺)} ,

where the supremum in RHS above is taken with respect to all priors 𝐺 supported on Θ.
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2. Let 𝑡𝐺(⋅) be a Bayes-optimal decision function with respect to the prior 𝐺 supported
on Θ. Furthermore, suppose that 𝑅(𝑡𝐺(⋅), 𝜃) is constant for all 𝜃 ∈ Θ. Then 𝑡𝐺(⋅) is
minimax optimal as defined in Eq. 1.6.

The above exercise demonstrates that one may think of the minimax approach as a conservative
approach to mimicking a Bayesian in the case wherein the analyst has no knowledge about
the prior 𝐺.

1.2 Statistical decisions with parallel problems

In an empirical Bayes analysis, we simultaneously face multiple simple statistical decision
problems as in Definition 1.1.

Definition 1.2 (Statistical decisions with parallel problems).

A) Unknown parameters 𝜃1, … , 𝜃𝑛 ∈ Θ. We write 𝜽 = 𝜽1∶𝑛 = (𝜃1, … , 𝜃𝑛) for the concatena-
tion of all the 𝜃𝑖.

B) Observed random variables 𝑍𝑖 ∼ 𝑝(⋅ ∣ 𝜃𝑖), 𝑖 = 1, … , 𝑛 (typically assumed conditionally
independent). We write 𝐙 = 𝐙1∶𝑛 = (𝑍1, … , 𝑍𝑛) for the concatenation of all the 𝑍𝑖.

C) Decisions 𝑡1, … , 𝑡𝑛 ∈ 𝒯. As above, also write 𝐭 = 𝐭1∶𝑛 = (𝑡1, … , 𝑡𝑛).
D) Losses ℓ(𝑡𝑖, 𝜃𝑖), 𝑖 = 1, … , 𝑛 incurred by decision 𝑡𝑖 when the true parameter is 𝜃𝑖.

Parallel problems such as the above are also called compound problems when the goal is to
minimize the average of the losses, that is:

ℓ(𝐭, 𝜽) = 1
𝑛

𝑛
∑
𝑖=1

ℓ(𝑡𝑖, 𝜃𝑖). (1.7)

Our decision 𝑡𝑖 for the 𝑖-th problem can depend on data for all problems, that is 𝑡𝑖 = 𝑡𝑖(𝐙)
instead of 𝑡𝑖 = 𝑡𝑖(𝑍𝑖). More broadly, our decisions for all the component problems take the
form:

𝐭(𝐙) = (𝑡1(𝐙), … , 𝑡𝑛(𝐙)). (1.8)

A, perhaps surprising,1 take-home message of empirical Bayes theory is that it can be beneficial
to make decisions for the 𝑖-th problem based on the data for all the problems!

1Robbins (1951) writes the following: “It is natural to suppose that the ‘best’ solution of the compound
problem consists in applying to each of the 𝑍𝑖 the ‘best’ solution of the original simple problem.”
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1.2.1 The compound risk function

In the present setting, we typically evaluate procedures with respect to their compound risk,
that is, with respect to the expectation of Eq. 1.7.

In frequentist terms we integrate Eq. 1.7. with respect to 𝐙 for fixed 𝜽 = (𝜃1, … , 𝜃𝑛):

𝑅(𝐭(⋅), 𝜽) = 1
𝑛

𝑛
∑
𝑖=1

𝔼𝜽 [ℓ(𝑡𝑖(𝐙), 𝜃𝑖)] .

Analogously, in the Bayesian case, wherein we assume 𝜃𝑖 ∼ 𝐺 for 𝑖 = 1, … , 𝑛:

𝑅(𝐭(⋅), 𝐺) = 1
𝑛

𝑛
∑
𝑖=1

𝔼𝐺 [ℓ(𝑡𝑖(𝐙), 𝜃𝑖)] .

The expectation above is taken with respect to the 𝑛 independent draws of the pairs (𝜃𝑖, 𝑍𝑖),
where 𝜃𝑖 ∼ 𝐺 and 𝑍𝑖 ∣ 𝜃𝑖 ∼ 𝑝(⋅ ∣ 𝜃𝑖).
When 𝜃𝑖 ∼ 𝐺, Robbins considered one further way of evaluating procedures. He considered
a hypothetical sequential task in which the analyst uses data from the first 𝑛 experiments to
construct a decision rule ̂𝑡(⋅) = ̂𝑡(⋅; 𝐙) to be applied to a hypothetical 𝑛+1-th decision problem
in the future. The risk of ̂𝑡(⋅) is then merely its Bayes risk with respect to the 𝑛 + 1-th simple
decision problem:

𝑅𝑛+1( ̂𝑡(⋅), 𝐺) = 𝔼𝐺 [ℓ( ̂𝑡(𝑍𝑛+1), 𝜃𝑛+1) ∣ ̂𝑡] .
We note the quantity above is random since ̂𝑡 is random (as a function of 𝑍1, … , 𝑍𝑛).

1.2.2 The value of large scale data

Before proceeding to concrete demonstrations of the empirical Bayes approach, we take a mo-
ment to highlight three of the new possibilities unlocked by empirical Bayes methods (which
were not available to us when we were faced with isolated simple statistical decision prob-
lems).

When we are faced with these parallel problems, several new features become available
to us compared to the situation wherein we are dealing with an individual component
problem.

1. For each simple component statistical problem we can typically never learn the
parameter 𝜃𝑖 precisely.2 However, we can precisely learn about properties of the
bulk of parameters {𝜃1, … , 𝜃𝑛} .

2. Suppose we are willing to posit that 𝜃𝑖
iid∼ 𝐺, but not that 𝐺 is known to us.3 This

setting is not amenable to analysis with data from a simple statistical decision
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problem. However, with many parallel problems, it becomes possible to construct
decision procedures that match the Bayes risk of a Bayes oracle that knows 𝐺.

3. Suppose we are not willing to assume that 𝜃𝑖 ∼ 𝐺 and instead assume that 𝜃1, … , 𝜃𝑛
are deterministic. Even in that case, it is often possible to come up with decision
rules 𝐭(𝐙) (see Eq. 1.8) that depend on all the data that perform better in terms of
the compound loss in Eq. 1.7 compared to the more “standard” approach wherein
the 𝑖-th decision depends on only data for the 𝑖-th statistical problem (that is,
𝑡𝑖 = 𝑡𝑖(𝑍𝑖)).

1.3 A simple vs. simple testing problem studied by Robbins (1951)

Example 1.1. Robbins (1951) considered the following decision problem.

A) Parameter: 𝜃 ∈ Θ = {−1, +1}.
B) Likelihood 𝑍 ∼ 𝒩(𝜃, 1).
C) 𝒯 = {−1, +1}.
D) Loss ℓ(𝑡, 𝜃) = 1(𝑡 ≠ 𝜃).

First suppose that we are willing to assume that 𝜃 ∼ 𝐺. Since 𝜃 ∈ {−1, +1}, it follows that
𝐺 is completely specified by 𝜋 = 𝐺({1}). We write for simplicity 𝐺 = 𝐺𝜋 for the prior that
assigns mass 𝜋 to +1 and mass 1 − 𝜋 to −1.
By applying Part 2. of Proposition 1.2, we get the following:

Proposition 1.3. The Bayes decision for the prior 𝐺𝜋 is equal to:

𝑡𝐺𝜋(𝑧) = {+1, if 𝑧 > 1
2 log ((1 − 𝜋)/𝜋)

−1, otherwise
. (1.9)

The Bayes risk then is equal to:

𝑅(𝐺𝜋) = 𝜋Φ (1
2 log ((1 − 𝜋)/𝜋) − 1) + (1 − 𝜋)Φ (−1

2 log ((1 − 𝜋)/𝜋) − 1) .

3In asymptotic statistics, we consider the regime wherein we collect more and more data for the simple
statistical decision problem. In an empirical Bayes analysis instead the typical assumption is that we have
a lot of parallel statistical problems, but limited data for each individual problem.

3As noted by Good (1992), for a Bayesian 𝐺 often represents epistemic uncertainty. When an empirical
Bayesian claims that “𝐺 exists”, then the connotation is that 𝐺 is a physical object: the frequency distri-
bution of the parameters 𝜃1, 𝜃2, ….
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Here Φ is the standard normal distribution function.

The Bayes rule for 𝜋 = 1/2, that is, 𝑡𝐺1/2(𝑧) = 1(𝑧 > 0) is minimax optimal and has constant
risk:

𝑅(𝑡𝐺1/2 , 𝜃) = Φ(−1) ≈ 0.1587 for 𝜃 ∈ {−1, 1} .
In contrast, for any 𝜋 ≠ 1/2:

max
𝜃∈{−1,+1}

𝑅(𝑡𝐺𝜋 , 𝜃) > Φ(−1) ≈ 0.1587.

Proof. The form of the Bayes-optimal decision follows from Proposition 1.2 (Part 2). The
frequentist risk function of any such 𝑡𝐺𝜋 is equal to:

𝑅(𝑡𝐺𝜋 , 𝜃) = {Φ (1
2 log ((1 − 𝜋)/𝜋) − 1) , if 𝜃 = 1

Φ (−1
2 log ((1 − 𝜋)/𝜋) − 1) , if 𝜃 = −1.

From here we can read off their Bayes risk. Furthermore we see that 𝑅(𝑡𝐺1/2 , 𝜃) = Φ(−1) for
both 𝜃 ∈ {−1, +1}, so minimax optimality follows from Exercise 1.1.

In words: in this simple setting, the Bayesian approach can outperform the minimax approach
by decreasing its loss for the 𝜃 ∈ {−1, +1} that has the largest prior probability. The price
to pay is that the risk for the 𝜃 with the lower prior probability increases above that of the
minimax rule that decides according to the sign of 𝑍𝑖.

Robbins (1951) showed that this conundrum largely disappears when one faces many parallel
problems.

1.3.1 Empirical Bayes results

Suppose we have 𝑛 independent pairs (𝜃𝑖, 𝑍𝑖) from the simple decision problem in Example 1.1
and further suppose that 𝜃𝑖 ∼ 𝐺 = 𝐺𝜋.

Above, it was unclear whether we have any knowledge of 𝜋 (perhaps we do in some settings;
in many others we don’t), and in the absence of it, it would be reasonable to proceed with
the minimax decision, 𝑡𝑖 = 1(𝑍𝑖 > 0). However, in the empirical Bayes setting, we can learn
about 𝜋! For example:

𝔼𝐺 [𝑍𝑖] = 𝜋 ⋅ 1 + (1 − 𝜋) ⋅ (−1) = 2𝜋 − 1, i.e.,𝔼𝐺 [(𝑍𝑖 + 1)/2)] = 𝜋.

Hence for 𝑛 sufficiently large, we can get a good estimate of 𝜋 as follows:

̂𝜋 = 1
2𝑛

𝑛
∑
𝑖=1

(𝑍𝑖 + 1).
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Then we can consider the following empirical Bayes decision rule based on 𝐙 = (𝑍1, … , 𝑍𝑛):

̂𝑡EB
𝑖 (𝐙) = {+1, if 𝑍𝑖 > 1

2 log ((1 − ̂𝜋)/ ̂𝜋)
−1, otherwise

. (1.10)

The above decision is the Bayes decision Eq. 1.9 with 𝜋 replaced by the estimate ̂𝜋.
It is possible to prove the following:

𝔼𝐺𝜋 [ 1
𝑛

𝑛
∑
𝑖=1

ℓ( ̂𝑡EB
𝑖 (𝐙), 𝜃𝑖)] → 𝑅(𝐺𝜋) as 𝑛 → ∞.

The above means that by allowing ourselves to use decision rules that depend on all the data,
we are able to match the Bayes risk without knowing the prior!

1.3.2 Results in the compound setting

Robbins (1951) presented the analysis above. However, in most of the paper he considered
the case wherein 𝜃1, … , 𝜃𝑛 are deterministic and not random according to 𝐺; he wrote “the
assumption of an existing but unknown prior distribution 𝐺 will be questionable in most
applications of statistics.”

A fascinating result is that even for deterministic 𝜃𝑖, it turns out that it can be beneficial
to use the decision rule Eq. 1.10. This was considered a breakthrough by Neyman (1962)
and the conclusion defies the following argument: “At first sight it may seem that the use of
decision functions of the general form 𝑡𝑖(𝑍1, … , 𝑍𝑛) is pointless, since the values 𝑍𝑗 for 𝑗 ≠ 𝑖
can contribute no information concerning 𝜃𝑖” (Robbins 1951).

So, what is going on? Observe the following. Let:

𝜋𝑛 = 𝜋𝑛(𝜃1, … , 𝜃𝑛) = 1
𝑛

𝑛
∑
𝑖=1

1(𝜃𝑖 = 1)

In the compound setting we have that:

1
2𝑛

𝑛
∑
𝑖=1

(𝑍𝑖 + 1) ∼ 𝒩(𝜋𝑛, 1/(4𝑛)).

Thus
̂𝑡EB
𝑖 (𝐙) ≈ {+1, if 𝑍𝑖 > 1

2 log ((1 − 𝜋𝑛)/𝜋𝑛)
−1, otherwise

.

Hence:

𝔼𝜽 [ℓ( ̂𝑡EB
𝑖 (𝐙), 𝜃𝑖)] ≈ {Φ (1

2 log ((1 − 𝜋𝑛)/𝜋𝑛) − 1) , if 𝜃𝑖 = 1
Φ (−1

2 log ((1 − 𝜋𝑛)/𝜋𝑛) − 1) if 𝜃𝑖 = −1.
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Averaging over 𝑖 = 1, … , 𝑛, we thus see:

𝔼𝜽 [ 1
𝑛

𝑛
∑
𝑖=1

ℓ( ̂𝑡EB
𝑖 (𝐙), 𝜃𝑖)]

≈ 𝜋𝑛Φ (1
2 log ((1 − 𝜋𝑛)/𝜋𝑛) − 1) + (1 − 𝜋𝑛)Φ (−1

2 log ((1 − 𝜋𝑛)/𝜋𝑛) − 1) .

Next note that the RHS is the Bayes risk 𝑅(𝐺𝜋𝑛) under the prior 𝐺𝜋𝑛 . Hence the above
argument demonstrates that:

𝔼𝜽 [ 1
𝑛

𝑛
∑
𝑖=1

ℓ( ̂𝑡EB
𝑖 (𝐙), 𝜃𝑖)] ≈ 𝑅(𝐺𝜋𝑛) ≤ Φ(−1).

In other words, the unconventional decision rule Eq. 1.10 that uses all data to make decisions
for individual simple problems outperforms the more conventional (and minimax) rule 𝑡𝑖(𝑍𝑖) =
1(𝑍𝑖 > 0) for almost all configurations of 𝜃𝑖. For this reason, Robbins called the decision rule
Eq. 1.10 an asymptotically subminimax solution. We visualize the conclusions in the figure
below:
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Empirical Bayes (n = 10)
Empirical Bayes (n = 100)

Figure 1.1: Risk functions in the stylized example of testing for 𝜃𝑖 = 1 vs. 𝜃𝑖 = −1 based on
𝑍𝑖 ∼ 𝒩(𝜃𝑖, 1), 𝑖 = 1, … , 𝑛.

Robbins (1951) infamously wrote that “𝑍1 could be an observation on a butterfly in
Ecuador, 𝑍2 on an oyster in Maryland, 𝑍3 the temperature of a star” to emphasize that
the parameters 𝜃𝑖 above may be deterministic and completely unrelated to each other.
Nowadays, most statisticians would agree that the empirical Bayes approach only makes
conceptual sense when applied to problems that are in fact related. Indeed, positing the
compound loss in Eq. 1.7 makes most conceptual sense when the problems are related
(in some form). Results in the compound setting are nevertheless considered important
to this day. For example, they showcase a form of modeling robustness of an empirical
Bayes analysis.
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1.4 The Poisson posterior mean problem

Example 1.1 may seem like a toy problem. Hence we now consider a more substantial decision
problem, that is, the Poisson decision problem (which is perhaps one of the most famous
use-cases of the empirical Bayes approach).

The simple problems we consider are as follows:

Example 1.2 (Poisson problem).

A) Unknown parameter 𝜃 ∈ [0, ∞).
B) Observed random variable 𝑍 ∼ Poisson(𝜃).

In his work, Robbins (1964) studied the above problem along with the decision spaces and
losses in Parts 2. and 3. of Proposition 1.2.

The following is perhaps one of the most famous empirical Bayes formulas:

Proposition 1.4. In the above situation and when 𝜃 ∼ 𝐺, then:

𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] = (𝑧 + 1)𝑓𝐺(𝑧 + 1)
𝑓𝐺(𝑧) . (1.11)

Proof. We have that

𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] = ∫ 𝜃𝑝(𝑧 ∣ 𝜃)
𝑓𝐺(𝑧) 𝑑𝐺(𝜃)

= 1
𝑓𝐺(𝑧) ∫ 𝜃exp(−𝜃)𝜃𝑧

𝑧! 𝑑𝐺(𝜃)

= 𝑧 + 1
𝑓𝐺(𝑧) ∫ exp(−𝜃)𝜃𝑧+1

(𝑧 + 1)! 𝑑𝐺(𝜃)

= (𝑧 + 1)𝑓𝐺(𝑧 + 1)
𝑓𝐺(𝑧) .
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1.4.1 Poisson F-modeling

Here’s the fascinating observation about Proposition 1.4: 𝑓𝐺(𝑧) = ℙ𝐺 [𝑍 = 𝑧] is easily esti-
mated since it depends on the marginal distribution of 𝑍, which we directly observe. For
example, a straight-forward estimator is the following:

̂𝑓𝑛(𝑧) = # {𝑖 ∶ 𝑍𝑖 = 𝑧}
𝑛 .

Hence we can easily estimate the posterior mean in the Poisson model. Hence we can estimate
the posterior mean as follows:

𝔼̂[𝜃 ∣ 𝑍 = 𝑧] = (𝑧 + 1) # {𝑖 ∶ 𝑍𝑖 = 𝑧 + 1}
# {𝑖 ∶ 𝑍𝑖 = 𝑧} . (1.12)

The above can be used e.g., to construct decision rules that are asymptotically optimal in
mean squared error. Here instead we will demonstrate asymptotic Bayes optimality for the
hypothesis testing loss in Definition 1.1 (Part 3). Building upon Eq. 1.12, we have the following
empirical Bayes decision rule:

̂𝑡𝑛(𝑧) = {𝐻>, if (𝑧+1) #{𝑖∶𝑍𝑖=𝑧+1}
#{𝑖∶𝑍𝑖=𝑧} > 𝜃∗

𝐻≤, otherwise
. (1.13)

Theorem 1.1. Suppose that 𝔼𝐺 [𝜃] < ∞. Then:

𝑅𝑛+1( ̂𝑡𝑛(⋅), 𝐺) → 𝑅(𝐺) as 𝑛 → ∞ almost surely.

Proof. Consider the event,

𝐴 = { ̂𝑓𝑛(𝑧) → 𝑓𝐺(𝑧) as 𝑛 → ∞ for all 𝑧 ∈ ℕ≥0} .

By Glivenko Cantelli it holds that ℙ𝐺 [𝐴] = 1.
Now take 𝑧 ∈ ℕ≥0 such that 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] ≠ 𝜃∗. Then on the event 𝐴, one gets that:

̂𝑡𝑛(𝑧) → 𝑡𝐺(𝑧) as 𝑛 → ∞,

as well as:
ℓ( ̂𝑡𝑛(⋅), 𝜃) → ℓ(𝑡𝐺(⋅), 𝜃) as 𝑛 → ∞.

We also note that ∫ sup𝑡 ℓ(𝑡, 𝜃)𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃) < ∞ since 𝑝(𝑧 ∣ 𝜃) ≤ 1, ℓ(𝑡, 𝜃) ≤ 𝜃 + 𝜃∗, and
𝔼𝐺 [𝜃] < ∞ by assumption. Hence by dominated convergence we get that on the event 𝐴 as
𝑛 → ∞:

∫ ℓ( ̂𝑡𝑛(𝑧), 𝜃)𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃) → ∫ ℓ(𝑡𝐺(𝑧), 𝜃)𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃). (1.14)
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In fact, if 𝑧 is such that 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] = 𝜃∗ then the above also holds since for such 𝑧 it holds
that:4

∫ ℓ( ̂𝑡𝑛(𝑧), 𝜃)𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃) = ∫ ℓ(𝑡𝐺(𝑧), 𝜃)𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃). (1.15)

Hence Eq. 1.14 holds for all 𝑧. To conclude we note the following:

∫ sup
𝑡

∫ ℓ(𝑡, 𝜃)𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃)𝑑𝜆(𝑧) ≤ ∫(𝜃 + 𝜃∗) ∫ 𝑝(𝑧 ∣ 𝜃)𝑑𝜆(𝑧)𝑑𝐺(𝜃)

= ∫(𝜃 + 𝜃∗)𝑑𝐺(𝜃) < ∞.

Hence by one more application of dominated convergence, we deduce that on the event 𝐴 as
𝑛 → ∞:

∫ ∫ ℓ( ̂𝑡𝑛(𝑧), 𝜃)𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃)𝑑𝜆(𝑧) → ∫ ∫ ℓ(𝑡𝐺(𝑧), 𝜃)𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃)𝑑𝜆(𝑧).

The above is equivalent to the sought-after conclusion:

𝑅( ̂𝑡𝑛(⋅), 𝐺) → 𝑅(𝑡𝐺(⋅), 𝐺) = 𝑅(𝐺) almost surely.

1.4.2 Poisson G-modeling

The construction of the empirical Bayes decision ̂𝑡𝑛(⋅) in Eq. 1.13 is very simple and follows
directly from a straightforward estimate of the marginal density 𝑓𝐺(𝑧).
One disadvantage is that the estimated decisions do not satisfy the natural monotonicity that
the “oracle” Bayes decisions satisfy.

Exercise 1.2. In the Poisson setting it holds that:

𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] ≥ 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧′] for 𝑧 ≥ 𝑧′.

4To see this, first observe that by Eq. 1.5,

𝔼𝐺 [ℓ(𝐻>, 𝜃) ∣ 𝑍 = 𝑧] = 𝔼𝐺 [ℓ(𝐻≤, 𝜃) ∣ 𝑍 = 𝑧] ,

when 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] = 𝜃∗. Multiplying by 𝑓𝐺(𝑧), this is equivalent to

∫ ℓ(𝐻>, 𝜃)𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃) = ∫ ℓ(𝐻≤, 𝜃)𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃).

Hence, no matter what value 𝑡𝐺(𝑧) ∈ {𝐻>, 𝐻≤} and ̂𝑡𝑛(𝑧) ∈ {𝐻>, 𝐻≤} take, Eq. 1.15 will hold. As a side
remark, we note that when 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] = 𝜃∗ holds, then the Bayes optimal decision 𝑡𝐺(𝑧) is not unique;
we may take either 𝑡𝐺(𝑧) = 𝐻> or 𝑡𝐺(𝑧) = 𝐻≤.
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In contrast ̂𝑡𝑛 above is not necessarily monotonic, so it could be that for 𝑍 = 𝑧, we would
claim that 𝜃 > 𝜃∗, but then for 𝑍 = 𝑧′ with 𝑧′ > 𝑧 we would claim instead 𝜃 ≤ 𝜃∗! This seems
undesirable.

Second, the approach works for the specific setting we considered (Poisson observation, test-
ing loss functions from Proposition 1.2, Part 3) and does not necesserily generalize to other
settings.

An alternative is the so-called 𝐺-modeling approach. Here we first estimate 𝐺 based on
𝑍1, … , 𝑍𝑛 and then consider the plug-in decision:

̂𝑡𝑛 = 𝑡𝐺,

that is we consider the Bayes decision evaluated at the estimated prior 𝐺 rather than the
(unknown) true prior 𝐺.

F-modeling and G-modeling
the core idea of the empirical Bayes approach is to estimate the prior distribution either
directly or indirectly using the available data, wherein the final inference is based on the
posterior distribution when using this estimated prior. Bradley Efron (2014) classified
empirical Bayes approaches as pursing one of two strategies: (i) 𝐹 -modeling, which is
modeling on the data scale; and (ii) G-modeling, which is modeling on the parameter
scale. Under 𝐹 -modeling, the resulting empirical Bayes rule usually depends on the prior
indirectly via the marginal probability density function; under 𝐺-modeling, the prior
distribution is estimated and then plugged into the posterior calculation. See N. Laird
(1978), and Jiang and Zhang (2009) for important works in the 𝐺-modeling approach,
and see Robbins (1956) Brown and Greenshtein (2009), and Bradley Efron (2011) for
some 𝐹 -modeling approaches. The approach we described in Section 1.4.1 is an example
of an 𝐹 -modeling approach, while in this section we present an example of a 𝐺-modeling
approach.

Estimates 𝐺 are often furnished through nonparametric maximum likelihood (which we will
treat in later lectures). Robbins (1964) instead suggested the following “minimum distance”
type estimator:5

𝐺 ∈ argmin{𝑑KS(𝐹𝐺, 𝐹𝑛) ∶ 𝐺 distribution supported on Θ} . (1.16)

Above, 𝐹𝐺 is the marginal distribution of 𝑍𝑖 (that is, the distribution with density 𝑓𝐺(⋅)) and
𝐹𝑛(𝑡) = 1

𝑛 ∑𝑛
𝑖=1 1(𝑍𝑖 ≤ 𝑡) is the empirical distribution of the 𝑍𝑖. Finally, for two distribution

functions 𝐹1, 𝐹2 on ℝ, 𝑑KS(𝐹1, 𝐹2) is the Kolmogorov-Smirnov distance:

𝑑KS(𝐹1, 𝐹2) = sup
𝑧∈ℝ

|𝐹1(𝑧) − 𝐹2(𝑧)| .

5Deely and Kruse (1968) go on to explain how this estimator may be computationally evaluated by solving a
linear program after a careful discretization.
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The conclusion of Theorem 1.1 also holds for the 𝐺-modeling-based estimate.

Proof. We apply first the triangle inequality and then the definition of 𝐺 as the minimizer in
Eq. 1.16.

𝑑KS(𝐹𝐺, 𝐹𝐺) ≤ 𝑑KS(𝐹𝐺, ̂𝐹𝑛) + 𝑑KS(𝐹𝐺, ̂𝐹𝑛) ≤ 2𝑑KS(𝐹𝐺, ̂𝐹𝑛).

Now, 𝑑KS(𝐹𝐺, ̂𝐹𝑛) → 0 almost surely by the Glivenko-Cantelli theorem, and so also
𝑑KS(𝐹𝐺, 𝐹𝐺) → 0 almost surely.

In the Poisson case, the above implies that for any 𝑧 ∈ ℕ≥0, we have that 𝑓𝐺(𝑧) → 𝑓𝐺(𝑧). For
example, for 𝑧 > 0:

𝑓𝐺(𝑧) = 𝐹𝐺(𝑧) − 𝐹𝐺(𝑧 − 1) → 𝐹𝐺(𝑧) − 𝐹𝐺(𝑧 − 1) = 𝑓𝐺(𝑧),

and also 𝑓𝐺(0) = 𝐹𝐺(0) → 𝐹𝐺(0) = 𝑓𝐺(0).
The rest of the argument is identical to the proof of Theorem 1.1.

We conclude this chapter by showing that in fact the estimator 𝐺 is asymptotically consistent
for the “true” 𝐺.

Theorem 1.2. 𝐺 = 𝐺𝑛 (defined in Eq. 1.16) converges weakly to 𝐺 as 𝑛 → ∞ almost surely.

Proof. Let 𝐴 be the event on which 𝑑KS(𝐹𝐺, 𝐹𝑛) → 0. As we explained above, ℙ𝐺 [𝐴] = 1.
Hence it suffices to argue that on the event 𝐴, 𝐺𝑛 converges weakly to 𝐺.

There are two steps to our proof. First, we will prove that on the event 𝐴, the sequence of
probability distributions (𝐺𝑛)𝑛∈ℕ is tight. Next we will prove that the weak limit of 𝐺𝑛𝑘

along
any subsequence 𝑛𝑘 must be 𝐺. To see this, suppose 𝐺𝑛𝑘

converges weakly to 𝐺 as 𝑘 → ∞.
For any 𝑧 ∈ ℕ≥0, 𝜃 ↦ 𝑝(𝑧 ∣ 𝜃) is continuous and bounded, and so as 𝑘 → ∞:

𝑓𝐺𝑛𝑘
(𝑧) = ∫ 𝑝(𝑧 ∣ 𝜃)𝑑𝐺𝑛𝑘

(𝜃) → ∫ 𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃) = 𝑓𝐺(𝑧).

On the other hand, on the event 𝐴, we also know that:

𝑓𝐺𝑛𝑘
(𝑧) → 𝑓𝐺(𝑧) as 𝑘 → ∞.

The above imply that 𝑓𝐺(𝑧) = 𝑓𝐺(𝑧) for all 𝑧 ∈ ℕ≥0. Below we will prove the identifiability of
Poisson mixtures, which means that 𝐺 = 𝐺. Our proof concludes by standard arguments for
establishing weak convergence of distributions (see e.g., Billingsley (1995, chap. 25, corollary
on pg. 337)).
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Tightness: Suppose (𝐺𝑛)𝑛∈ℕ is not tight (on the event 𝐴). Then there exist (random) 𝜀 > 0
and sequences 𝑛𝑘 ∈ ℕ, 𝑀𝑘 > 0 with 𝑛𝑘, 𝑀𝑘 → ∞ as 𝑘 → ∞ so that:

𝐺𝑛𝑘
(𝑀𝑘) ≤ 1 − 𝜀 for all 𝑘 ∈ ℕ.

Next pick 𝑧′ ∈ ℕ such that 𝐹𝐺(𝑧′) ≥ 1 − 𝜀/2. Observe the following:

𝐹𝐺𝑛𝑘
(𝑧′) = ∫

∞

0

𝑧′

∑
𝑧=0

𝑝(𝑧 ∣ 𝜃)𝑑𝐺𝑛𝑘
(𝜃)

≤ 𝐺𝑛𝑘
(𝑀𝑘) + sup

𝜃>𝑀𝑘

{
𝑧′

∑
𝑧=0

𝑝(𝑧 ∣ 𝜃)} .

Now, for any 𝑧, 𝑝(𝑧 ∣ 𝜃) → 0 as 𝜃 → ∞. Hence taking 𝑘 → ∞ we find:
lim sup

𝑘→∞
𝐹𝐺𝑛𝑘

(𝑧′) ≤ 1 − 𝜀.

However, on the event 𝐴, we have that:
lim

𝑘→∞
𝐹𝐺𝑛𝑘

(𝑧′) = 𝐹𝐺(𝑧′) ≥ 1 − 𝜀/2.

This is a contradiction. Hence (𝐺𝑛)𝑛∈ℕ is tight on 𝐴.

Identifiability: Take two distributions 𝐺1, 𝐺2 on [0, ∞) such that:
𝑓𝐺1

(𝑧) = 𝑓𝐺2
(𝑧) for all 𝑧 ∈ ℕ≥0.

This means that:

∫ exp(−𝜃)𝜃𝑧𝑑𝐺1(𝜃) = ∫ exp(−𝜃)𝜃𝑧𝑑𝐺2(𝜃) for all 𝑧 ∈ ℕ≥0.

Write 𝑓𝐺1
(0) = 𝑓𝐺2

(0) = 𝑐. If 𝑐 = 1 then it must be that 𝐺1 = 𝐺2 = 𝛿0, a Dirac point mass
at 0. Suppose otherwise, i.e., that 𝑐 < 1. Then define the following measures 𝐻1, 𝐻2:

𝑑𝐻1(𝜃) = 1
𝑐 exp(−𝜃)𝑑𝐺1(𝜃), 𝑑𝐻2(𝜃) = 1

𝑐 exp(−𝜃)𝑑𝐺2(𝜃).
By the above condition,

∫ 𝜃𝑧𝑑𝐻1(𝜃) = ∫ 𝜃𝑧𝑑𝐻2(𝜃) for all 𝑧 ∈ ℕ≥0.

This means that we have two distributions on [0, ∞) for which all moments are identical. Also
we may note that both distributions have a moment generating function close to the origin.
In particular, for any |𝑡| < 1, we have that:

𝔼𝐻1
[exp(𝑡𝜃)] = 1

𝑐 ∫ exp(𝑡𝜃) exp(−𝜃)𝑑𝐺1(𝜃) ≤ 1
𝑐 < ∞,

and analogously for 𝐻2. These two facts demonstrate that 𝐻1 = 𝐻2 (see e.g., Billingsley (1995,
chap. 30)). But then it must also hold that 𝐺1 = 𝐺2.
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1.5 Bibliographic remarks

The terms 𝐹 -modeling and 𝐺-modeling are due to Bradley Efron (2014). The two modeling
strategies for the Poisson case indeed go back to the early works of Herbert Robbins. Never-
theless, not all questions are settled, e.g., Shen and Wu (2022) provided some new results on
mean squared error optimal empirical Bayes estimation in the Poisson problem and contrasted
the 𝐹 - and 𝐺−modeling approaches.
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2 Illustrative applications of empirical Bayes

2.1 Actuarial statistics

2.1.1 Historical setting

Empirical Bayes ideas have been fruitful in the rate-making of automobile insurances. The
foundation of these ideas was developed by actuaries in Europe in the 1960s, e.g., by Thyrion
(1960), and Bichsel (1964). At least initially it appears that they were not aware of Robbins’
work on empirical Bayes.

Suppose an insurance company has a portfolio with drivers 𝑖 = 1, … , 𝑛. The portfolio has been
constructed in a way that accounts for some covariates that are predictive of insurance claims
risk. Suppose the drivers enroll into their policy in a yearly basis. After a single year, some
drivers have made multiple claims, while other drivers did not make a single claim. Should
the insurance increase the premium of the former, and decrease the premium of the latter? By
what amount? Thyrion (1960) explains:

“To create homogeneous rate classes, all the factors influencing the risk must the-
oretically be identified and their effects quantified. If this is done, the fluctuation
of individual results around the average is only the accidental effect of chance […]:
there is nothing unfair about policyholders who have not had losses paying for
others […]. In general—and this is the case in Belgium—the rate classes take into
account one characteristic of the vehicle’s power (displacement or fiscal power), the
use it is put to (tourism and business, transport for one’s own account, transport
of others, etc.), sometimes also one or another factor specific to the driver (profes-
sion). […] Now the studies done […] indicate that a high percentage of accidents are
due to recklessness, […] drunkenness, etc… in short to the driver’s behavior itself.
A significant factor of the risk is therefore hardly taken into account in the pricing.
It is therefore not unreasonable to ask if—in the absence of something better—it
would not be appropriate to try to take it into account a posteriori.”

2.1.2 Formalizing the setup

Let us formalize the above following Thyrion (1960). We index time by 𝑡, with 𝑡 = 1 marking
the end of the first year of all contracts. Let 𝑍𝑖(𝑡) ∈ ℕ≥0 denote that number of claims by
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the 𝑖-th individual until time 𝑡. Furthermore, we let the claim amount of the 𝑗-th claim of
driver 𝑖 be equal to the random variable Ξ𝑖𝑗. The total cost the driver incurs to the insurance
company until time 𝑡 is thus equal to

𝐶𝑖(𝑡) =
𝑍𝑖(𝑡)
∑
𝑗=1

Ξ𝑖𝑗.

To make further progress, we make the following assumptions:

1. 𝑍𝑖(⋅) is a homogeneous Poisson process 1 with intensity 𝜃𝑖 that is specific to the 𝑖-th
driver and represents the driver’s accident proneness. Thus we posit that conditionally
on 𝜃𝑖 the following holds: for any finite collection of times (𝑡𝑘)𝑘 with 𝑡𝑘 ≥ 0 and 𝑡𝑘 < 𝑡𝑘+1,
(𝑍𝑖(𝑡𝑘+1)−𝑍𝑖(𝑡𝑘))𝑘 are jointly independent. Furthermore, 𝑍𝑖(𝑡𝑘+1)−𝑍𝑖(𝑡𝑘) ∼ Poisson(𝜃𝑖⋅
(𝑡𝑘+1 − 𝑡𝑘)). For a two year period, the Poisson process assumption entails that:

𝑍𝑖(1), 𝑍𝑖(2) − 𝑍𝑖(1) ∣ 𝜃𝑖
iid∼Poisson(𝜃𝑖).

2. The distribution of Ξ𝑖𝑗 does not depend on 𝑖 or 𝑗 and is independent of the claims process
𝑍𝑖(⋅). Hence we write Ξ for a generic random variable with the same distribution as Ξ𝑖𝑗.2
Assuming also that 𝔼 [Ξ] < ∞ we get by Wald’s Lemma:

𝔼𝜃𝑖
[𝐶𝑖(𝑡)] = 𝔼𝜃𝑖

[𝑍𝑖(𝑡)] 𝔼 [Ξ] = 𝑡 ⋅ 𝜃𝑖 ⋅ 𝔼 [Ξ] .

Hence, under our simplifying assumptions, the expected cost 𝔼𝜃𝑖
[𝐶𝑖(𝑡)] of the 𝑖-th driver to

the insurance company is proportional to the expected number of claims 𝔼𝜃𝑖
[𝑍𝑖(𝑡)]. The above

also means that the expected cost of the 𝑖-th driver in the second year will be proportional to
𝔼𝜃𝑖

[𝑍𝑖(2) − 𝑍𝑖(1)] = 𝜃𝑖. This remains true conditionally on the number of claims 𝑍𝑖(1) in the
first year, that is, 𝔼𝜃𝑖

[𝑍𝑖(2) − 𝑍𝑖(1) ∣ 𝑍𝑖(1)] = 𝜃𝑖.

Hence if we had started with a truly homogeneous portfolio, that is, 𝜃𝑖 = ̄𝜃 for all 𝑖 = 1, … , 𝑛,
then it would be fair to keep everyone’s premium the same no matter how many claims they
made in the first year!

However, the basic supposition of Thyrion (1960) and others (e.g., Bühlmann (1964), Bichsel
(1964)) is that the 𝜃𝑖 vary from driver to driver (because the insurance company cannot control
for all possible risk factors), and these 𝜃𝑖 may be taken as random draws:

𝜃𝑖 ∼ 𝐺.
1Thyrion (1960) argues that this assumption is a reasonable starting point: “This hypothesis is reasonable if

the risk does not vary systematically over time. Of course, the automobile risk has seasonal, daily and even
hourly peaks, and the instantaneous rate of accidents would be better represented by a periodic function of
time 𝜃𝑖(𝑡). But, as only whole numbers of periods (years) of insurance are considered in practice, there is
no major objection to taking 𝜃𝑖 constant.”

2This assumption represents the belief that to first order it suffices to capture the frequency of claims and not
their severity: it is a sensible starting point for more involved modeling.
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Bichsel (1964) called 𝐺 the “structural function” representing the portfolio’s heterogeneity.

Since 𝜃𝑖 of driver 𝑖 is not known, it is impossible to assess their expected number of claims in
the next year. However, it will turn out that it is possible to assess the expected number of
claims in the 2nd year among all drivers who made the same number of claims in the 1st year.
We have that:

𝔼𝐺 [𝑍𝑖(2) − 𝑍𝑖(1) ∣ 𝑍𝑖(1)] = 𝔼𝐺 [𝔼𝜃𝑖
[𝑍𝑖(2) − 𝑍𝑖(1) ∣ 𝑍𝑖(1)] ∣ 𝑍𝑖(1)] = 𝔼𝐺 [𝜃𝑖 ∣ 𝑍𝑖(1)] .

Thyrion (1960) continues saying that “as the a posteriori structure function […] is given by the
Bayes formula, the expression for 𝔼 can be written more simply”, and derives that:

𝔼𝐺 [𝜃𝑖 ∣ 𝑍𝑖(1) = 𝑧] = (𝑧 + 1)ℙ𝐺 [𝑍𝑖(1) = 𝑧 + 1]
ℙ𝐺 [𝑍𝑖(1) = 𝑧] .

In other words, Thyrion (1960) had discovered Robbins’ famous formula Eq. 1.11 for the
posterior mean in the Poisson problem!

There are several attractive features to assigning premiums proportionally to 𝔼𝐺 [𝜃𝑖 ∣ 𝑍𝑖(1)]
with proportionality constant 𝔼 [Ξ].

1. The premium system is financially balanced in the following sense:

𝔼𝐺 [Premium𝑖(𝑍𝑖(1))] = 𝔼𝐺 [𝔼 [Ξ] 𝔼𝐺 [𝜃𝑖 ∣ 𝑍𝑖(1)]] = 𝔼 [Ξ] 𝔼𝐺 [𝜃𝑖] = 𝔼𝐺 [𝐶𝑖(2) − 𝐶𝑖(1)] .

2. The premium is assigned in the optimal way as a function of 𝑍𝑖(1) according to squared
error loss.

3. The premium is non-decreasing in the number of accidents (cf. Exercise 1.2).

However, the above presupposes knowledge of the “structure function” 𝐺. Both Thyrion (1960)
and Bichsel (1964) realized that they could use 𝑍1(1), … , 𝑍𝑛(1) in order to estimate 𝐺, and
to then determine the premium for the next year. Hence they had managed to reduce the
problem to precisely the Poisson empirical Bayes problem we discussed in Section 1.4.

As an aside, we note that Vernon Johns, a pioneer in empirical Bayes theory, considered the
above to be one of the best applications of empirical Bayes. In a discussion (Johns 1974) of
Bühlmann (1976), Vernon Johns wrote:

“I would like to take this opportunity to interject a parenthetical remark to the effect
that insurance rate making provides one of the best examples I know where the
pure Bayesian approach based on subjective prior probabilities is not appropriate.
The point here is that the actuary’s subjective prior may well be substantially
different from those of the insurance commissioner or the client even if they have
access to similar collateral information, since their interests do not coincide. The
Bayesian philosophy does not really provide for the negotiation of such differences.”
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2.1.3 An example: La Royale Belge

We make the above discussion concrete by reanalyzing the portfolio that Thyrion (1960) an-
alyzed. He had access to a year of data (claims) for a portfolio of the “La Royale Belge”
insurance company that covered vehicles in the category “Tourism and Business”. Table 2.1
shows the full dataset.3

using Empirikos
using TypedTables
using MarkdownTables
using Optim
using MosekTools

thyrion_tbl = Thyrion.load_table()
thyrion_eb = PoissonSample.(thyrion_tbl.z)
thyrion_summary = Empirikos.MultinomialSummary(thyrion_eb, thyrion_tbl.count)
markdown_table(thyrion_tbl)

Table 2.1: The number of drivers (second column) who made a given number of claims through-
out the year in which they were insured (first column). For example, 7840 drivers
made zero claims, and 1317 drivers made a single claim.

z count
0 7840
1 1317
2 239
3 42
4 14
5 4
6 4
7 1

We compare a few different choices for estimating the prior 𝐺:

1. We model 𝐺 as a Dirac mass. In this case there is no unobserved heterogeneity. Maximum
likelihood over 𝐺 is identical to maximum likelihood estimation of the common Poisson
rate.

2. We model 𝐺 as a Gamma distribution; the conjugate prior for the Poisson likelihood.
This is a parametric model with two unknown parameters.

3We include Julia code to reproduce the following analysis.
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3. Finally we consider the nonparametric estimate Eq. 1.16.

We start by fitting the above models:

mean_Zs = mean(response.(thyrion_summary), weights(thyrion_summary))

fitted_dirac = Dirac(mean_Zs)

fitted_gamma = fit(
Empirikos.ParametricMLE(model = Gamma(), solver = NewtonTrustRegion()),
thyrion_summary,

)

ks_nonparametric = fit(
Empirikos.KolmogorovSmirnovMinimumDistance(DiscretePriorClass(0:0.02:8), Mosek.Optimizer),
thyrion_summary,

)
fitted_ks = Empirikos.clean(ks_nonparametric.prior)

We plot the estimated priors:

0 1 2 3 4

θ

Dirac
Gamma

Nonparametric
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Above it is difficult to see all masses of the nonparametric 𝐺. The table below shows all the
masses and corresponding probabilities of 𝐺:

markdown_table(
Table(

loc = round.(support(fitted_ks), digits=3),
prob = round.(probs(fitted_ks), digits=3)

)
)

Table 2.2: Nonparametric prior ̂𝐺 estimated by the minimum distance method. ̂𝐺 is a finite
discrete distribution with point mass locations.

loc prob
0.0 0.371
0.26 0.095
0.28 0.478
0.8 0.037
0.82 0.014
3.08 0.002
3.1 0.003

Let us look at how well our models fit with the observed counts. We see that the model of no
heterogeneity provides a very subpar fit. Assuming that 𝐺 is a Gamma distribution improves
the fit, and the nonparametric model improves the fit further.

n = nobs(thyrion_summary)

markdown_table(
Table(
Z = thyrion_tbl.z,
Empirical = thyrion_tbl.count,
Dirac = round.(pdf.(fitted_dirac, thyrion_eb) .* n, digits=1),
Gamma = round.(pdf.(fitted_gamma, thyrion_eb) .* n, digits=1),
Nonparametric = round.(pdf.(fitted_ks, thyrion_eb) .* n, digits=1)
)

)
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Z Empirical Dirac Gamma Nonparametric
0 7840 7635.6 7847.0 7839.3
1 1317 1636.7 1288.4 1318.5
2 239 175.4 256.5 237.5
3 42 12.5 54.1 43.5
4 14 0.7 11.7 12.5
5 4 0.0 2.6 5.5
6 4 0.0 0.6 2.5
7 1 0.0 0.1 1.1

Finally let us look at the estimated posterior means.

robbins_postmeans = ((0:7).+1) ./ thyrion_tbl.count .* [thyrion_tbl.count[2:end]; 0]

postmeans = PosteriorMean.(PoissonSample.(0:7))
markdown_table(

Table(
Estimand = postmeans,
Dirac = round.(postmeans(fitted_dirac), digits=2),
Gamma = round.(postmeans(fitted_gamma), digits=2),
NonparametricG = round.(postmeans(fitted_ks), digits=2),
Robbins = round.(robbins_postmeans, digits=2)

)
)

Table 2.4: Posterior means

Estimand Dirac Gamma NonparametricG Robbins
𝔼[μ | 𝒫ℴ𝒾(0; μ)] 0.21 0.16 0.17 0.17
𝔼[μ | 𝒫ℴ𝒾(1; μ)] 0.21 0.4 0.36 0.36
𝔼[μ | 𝒫ℴ𝒾(2; μ)] 0.21 0.63 0.55 0.53
𝔼[μ | 𝒫ℴ𝒾(3; μ)] 0.21 0.87 1.16 1.33
𝔼[μ | 𝒫ℴ𝒾(4; μ)] 0.21 1.1 2.17 1.43
𝔼[μ | 𝒫ℴ𝒾(5; μ)] 0.21 1.33 2.81 6.0
𝔼[μ | 𝒫ℴ𝒾(6; μ)] 0.21 1.57 3.02 1.75
𝔼[μ | 𝒫ℴ𝒾(7; μ)] 0.21 1.8 3.07 0.0

Observe that Robbins’ 𝐹 -modeling estimator can behave quite eratically for large values of
𝑍.
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2.2 The missing species problem

Our next applications also pertains to an ingenious empirical Bayes solution to a seemingly
impossible problem.

During World War II, Alexander Corbet, a renowned naturalist, spent two years in Malaysia
(then called Malaya) trapping butterflies. Throughout his time, he captured 620 species of
butterfly. For 118 of these species, he had captured a single specimen, while 74 species had
been captured twice, 44 species had been captured three times, and so on.

butterfly_tbl = Butterfly.load_table()
markdown_table(butterfly_tbl)

x y
1 118
2 74
3 44
4 24
5 29
6 22
7 20
8 19
9 20
10 15
11 12
12 14
13 6
14 12
15 6
16 9
17 9
18 6
19 10
20 10
21 11
22 5
23 3
24 3

In addition to the above 501 species, Corbet captured another 119 species, with 25 specimen
or more for each.
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His seemingly impossible question was the following: how many new species that he had never
encountered before could he expect to catch if he returned to Malaysia for one more year?

He posed the question to R.A. Fisher and the latter came up with an extraordinary empirical
Bayes solution (Fisher, Corbet, and Williams 1943). Fisher posited that in total there are 𝑆
species of butterfly in Malaysia. Let 𝑍𝑖 be the number of butterflies of species 𝑖 that Corbet
captured. Fisher then assumed the following:

𝑍𝑖 ∼ Poisson(𝜃𝑖),
for some 𝜃𝑖 > 0. 𝜃𝑖 represents how abundant a species is, how easy it is to be captured and so
forth. Furthermore, Fisher assumed that:

𝜃𝑖 ∼ 𝐺,
where he took 𝐺 to be a Gamma distribution with unknown parameters.4 Let us figure out
how many new butterfly species Corbet could expect under the above hierarchical model. Fix
the species 𝑖. The probability that Corbet did not capture any butterfly of species 𝑖 in his
two years at Malaysia, but would capture such a butterfly after one more year, is equal to
𝔼𝐺 [exp(−𝜃) (1 − exp(−𝜃/2))].5 Hence the expected number of new species in one more year
is equal to:

𝑆
∑
𝑖=1

𝔼𝐺 [exp(−𝜃𝑖) (1 − exp(−𝜃𝑖/2))] = 𝑆 ⋅ 𝔼𝐺 [exp(−𝜃) (1 − exp(−𝜃/2))] . (2.1)

In an typical empirical Bayes fashion, one could hope to estimate 𝐺 based on the data from the
first two years, and then to estimate the quantity above. However, there is one more challenge:
in fact, not even 𝑆, the total number of species is known! Corbet only knew the number of
species that he observed one or more times, that is:

̂𝑆≥1 =
𝑆

∑
𝑖=1

1(𝑍𝑖 ≥ 1).

The expectation of the quantity above is equal to:
𝔼𝐺 [ ̂𝑆≥1] = 𝑆 ⋅ 𝔼𝐺 [(1 − exp(−𝜃))] .

Hence we can rewrite the expected number of new species in one more year Eq. 2.1 as:

𝔼𝐺 [ ̂𝑆≥1] ⋅ 𝔼𝐺 [exp(−𝜃) (1 − exp(−𝜃/2))]
𝔼𝐺 [(1 − exp(−𝜃))] .

Hence if we have access to an estimate 𝐺 of 𝐺, then we could estimate the expected number
of new species Corbet would trap by the following:

̂𝑆≥1 ⋅ 𝔼𝐺 [exp(−𝜃) (1 − exp(−𝜃/2))]
𝔼𝐺 [(1 − exp(−𝜃))] .

4Good (1992) notes that Fisher did not use the term “prior” for 𝐺 “in case anyone thought he’d become a
covert Bayesian.”

5Here we made a Poisson process assumption, similar to the one we made in the actuarial application of
Section 2.1.
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2.2.1 A parametric approach

Below we carry out this computation by making the parametric assumption that 𝐺 is a Gamma
distribution with unknown parameters and then estimating 𝐺 by maximum likelihood. 6

butterfly_Zs = [
Empirikos.MarginallyTruncatedPoissonSample.(butterfly_tbl.x)
Empirikos.MarginallyTruncatedPoissonSample(Interval(25, nothing))

]
butterfly_summary = Empirikos.MultinomialSummary(butterfly_Zs, [butterfly_tbl.y; 119])

gamma_butterfly = fit(
Empirikos.ParametricMLE(model = Gamma(), solver = NewtonTrustRegion()),
butterfly_summary,

)
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100
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Gamma fit

We can now estimate the number of new species that Corbet would encounter after one more
year:

6One needs to pay attention here and account for the fact that we do not observe species with 𝑍𝑖 = 0 and
also that we do not know the exact value of 𝑍𝑖 for species with 𝑍𝑖 ≥ 25, but only that 𝑍𝑖 is at least as
large as 25. Hence we are facing a problem with left-truncation and right-censoring.
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expected_new_species =
nobs(butterfly_summary) *
(mgf(gamma_butterfly, -1) - mgf(gamma_butterfly, -1 - 1 / 2)) /
(1 - mgf(gamma_butterfly, -1))

expected_new_species

46.67776925110288

Hence our estimate is that Corbet would catch about 46.68 new species if butterfly.

2.2.2 An F-modeling approach due to Good, Toulmin, and Turing

Good and Toulmin (1956) proposed a nonparametric approach to answering the above question;
Good attributed the core ideas of what follows to Alan Turing. The starting point is to revisit
Eq. 2.1. Expanding 1 − exp(−𝜃/2) in its Taylor series, we get:

𝑆 ⋅ 𝔼𝐺 [exp(−𝜃) (1 − exp(−𝜃/2))] = 𝑆 ⋅ 𝔼𝐺 [
∞

∑
𝑗=1

exp(−𝜃)(−1)𝑗−1𝜃𝑗

2𝑗𝑗! ] .

Also note that:

𝔼𝐺 [# {𝑖 ∶ 𝑍𝑖 = 𝑗}] =
𝑆

∑
𝑖=1

ℙ𝐺 [𝑍𝑖 = 𝑗] = 𝑆 ⋅ 𝔼𝐺 [exp(−𝜃)𝜃𝑗

𝑗! ] .

Hence by Tonelli-Fubini and by matching terms:

𝑆 ⋅ 𝔼𝐺 [exp(−𝜃) (1 − exp(−𝜃/2))] =
∞

∑
𝑗=1

𝔼𝐺 [# {𝑖 ∶ 𝑍𝑖 = 𝑗}] (−1)𝑗−1

2𝑗 .

The punchline is the following: just as we could estimate Robbins’ formula in Eq. 1.12 by
plugging in the observed counts, we can do the same above! We get the following nonparametric
estimator ∞

∑
𝑗=1

# {𝑖 ∶ 𝑍𝑖 = 𝑗} (−1)𝑗−1

2𝑗 ,

which of course is just a finite sum. Let us compute this!

good_toulmin_turing = sum(-(-0.5).^(1:24) .* butterfly_tbl.y )
good_toulmin_turing

45.17149204015732

In this case, the nonparametric estimate 45.17 is very close to the parametric estimate 46.68
that we derived above.
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2.3 Intestinal surgery dataset

Gholami et al. (2015) studied the problem of staging gastric adenocarcinoma in patients
who had undergone intestinal surgery. The following table (Bradley Efron and Hastie 2016,
chap. 6.3) contains data on 844 patients. For each patient, the data consists of 𝑁𝑖, the total
number of surgically removed lymph nodes, as well as 𝑍𝑖, the number of lymph nodes that
were positive.

Below we provide a scatterplot of the full dataset:

surgery_samples = Surgery.ebayes_samples()
surgery_props = response.(surgery_samples) ./ ntrials.(surgery_samples)
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We model the data as follows:7

𝑝𝑖 ∼ 𝐺, 𝑍𝑖 ∣ 𝑝𝑖, 𝑁𝑖 ∼ Binomial(𝑝𝑖, 𝑁𝑖)

We will fit a nonparametric class of smooth priors to our dataset by nonparametric maximum
likelihood (which we will describe in a later class). The class of smooth priors we consider is
a mixture of smooth Beta densities, of which we show plot some components below:

7In contrast to the empirical Bayes models we have been looking at so far, here the likelihood is different for
different units since it is a function of 𝑁𝑖. The empirical Bayes framework can handle such heterogeneous
settings as well.
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smooth_beta_class = Empirikos.auto_convexclass(
Empirikos.BetaMixtureClass(),
0.05, 0:0.01:1

)
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Hence we seek to capitalize on what Efron calls the “bet on smoothness” principle. 8 The
density of the estimated prior is shown next:

fitted_betamix = fit(NPMLE(smooth_beta_class, Mosek.Optimizer), surgery_samples)

8The class of priors considered in Bradley Efron and Hastie (2016) to “bet on smoothness” is instead an
exponential family with a fourth degree polynomial as the sufficient statistic. This is a different class of
priors than the one we considered above; however the conclusions are similar.

35



0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

5.0

7.5

10.0

θ

de
ns

ity
estimated prior

We may answer questions as the following: what is the chance that 𝑝𝑖 ≤ 0.1? As we can see,
the (estimated) answer is over 50%.

round(cdf(fitted_betamix.prior, 0.1), digits = 2)

0.51

Furthermore, Gholami et al. (2015) were interested in figuring out which patients have 𝑝𝑖 ≥
7/16. Our empirical Bayes approach allows us to compute the posterior probability that
𝑝𝑖 ≥ 7/16 for each patient.

post_prob_estimands =
Empirikos.PosteriorProbability.(surgery_samples, Interval(7 / 16, 1.0))

estimated_post_probs = post_prob_estimands(fitted_betamix.prior)

36



0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Zi/Ni

P
Ĝ
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2.4 Bibliographic remarks

We refer the reader to the following excellent resources that provide an overview of further
applications of empirical Bayes: Bradley Efron (2010) and Bradley Efron and Hastie (2016,
chap. 6) provide illuminating descriptions of several of the applications we discussed above.
Koenker and Gu (2017) and Narasimhan and Efron (2020) describe empirical Bayes applica-
tions alongside reproducible software code. Bühlmann (2005) is a textbook that describes the
application of empirical Bayes ideas (and more) to actuarial problems.
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3 The James-Stein estimator and Empirical
Bayes

3.1 Introduction

Consider the following simple model where we observe

𝑋1, … , 𝑋𝑚
𝑖𝑖𝑑∼ 𝑁(𝜃, 𝜎2), where 𝑚 ≥ 1, (3.1)

and we are interested in estimating the unknown 𝜃 ∈ ℝ, and 𝜎2 is assumed known. We know
that in this model, 𝑋̄𝑚 ∶= 1

𝑚 ∑𝑚
𝑖=1 𝑋𝑖 is the “best” estimator for 𝜃—we know that 𝑋̄𝑚 has a

number of appealing properties, some of which we list below:

1. it is complete sufficient for 𝜃;
2. it is the uniformly minimum variance unbiased estimator (UMVUE) of 𝜃 and it attains

the Cramér-Rao lower bound;

3. it is the maximum likelihood estimator (MLE) of 𝜃;
4. it is minimax1 optimal;

5. it is admissible2.

Further, if we measure the quality of any estimator ̂𝜃 of 𝜃 by using its squared-error risk, by
Rao-Blackwellization (or the sufficiency principle), it is enough to consider estimators that are
just functions of 𝑋̄𝑚. Thus, in essence, we have reduced the problem from 𝑚 data points to
just one by considering 𝑍 ∶= 𝑋̄𝑚 ∼ 𝑁(𝜃, 𝜎2

𝑚 ).
Now, instead of estimating one parameter 𝜃, consider estimating 𝜃1, … , 𝜃𝑛 ∈ ℝ from indepen-
dent observations:

𝑍𝑖 ∼ 𝑁(𝜃𝑖, 1), for 𝑖 = 1, … , 𝑛, (3.2)
1A proof of the minimaxity of 𝑋̄𝑚 can be found in Keener (2010a, chap. 16.6).
2Consider the decision theoretic framework of Chapter 1. An estimator 𝛿(𝑍) (where 𝑍 is the observed data)

is said to be inadmissible if there exists another estimator 𝛿′(𝑍) such that 𝑅(𝛿′(⋅), 𝜃) ≤ 𝑅(𝛿(⋅), 𝜃) for all
𝜃 ∈ Θ, and 𝑅(𝛿′(⋅), 𝜃) < 𝑅(𝛿(⋅), 𝜃) for at least one 𝜃. In this case 𝛿′(⋅) is a “better” estimator than 𝛿(⋅)
(i.e., 𝛿′(⋅) beats 𝛿(⋅)) and hence 𝛿(⋅) is inadmissible. An estimator 𝛿′(⋅) is said to be admissible if there
exits no estimator that beats it (for all values of 𝜃 ∈ Θ). See Keener (2010a, chap. 11.3) for a proof of the
admissibility of 𝑋̄𝑚. This result is known from the works of Hodges and Lehmann (1951), Girshick and
Savage (1951), and Blyth (1951).
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Here, for notational simplicity, we assume that the known variance is 1; the exact same tech-
niques would work for any known 𝜎2 > 0.
Succinctly, the above model can be written as 𝐙 ∼ 𝑁(𝜽, 𝐼𝑛) where 𝜽 = (𝜃1, … , 𝜃𝑛). Let

̂𝜽 = ( ̂𝜃1, … , ̂𝜃𝑛) be any estimator of 𝜽. A natural and intuitive estimator of 𝜽 is 𝐙 — it can be
shown that 𝐙 satisfies properties 1-4 above.

Nonetheless, it turns out that 𝐙 is not admissible for 𝑛 ≥ 3, although it is admissible for
𝑛 = 1, 23,4. C. Stein (1956) demonstrated that 𝐙 could be improved everywhere, but a specific
“practical” form of such an improved estimator was developed in the celebrated paper James
and Stein (1961).5

Definition 3.1 (James-Stein estimator (James and Stein 1961)). For 𝑛 > 2, James and Stein
(1961) proposed the following estimator

̂𝜽𝐽𝑆 ∶= (1 − 𝑛 − 2
‖𝐙‖2 ) 𝐙, where ‖𝐙‖2 =

𝑛
∑
𝑖=1

𝑍2
𝑖 , (3.3)

which is called the James-Stein estimator.

James and Stein (1961) showed that ̂𝜽𝐽𝑆 is a “better” estimator than the MLE 𝐙.

Theorem 3.1 (James and Stein (1961)). For 𝑛 ≥ 3, ̂𝜽𝐽𝑆 dominates the MLE 𝐙 everywhere
in terms of squared-error risk, i.e.,

𝔼𝜽[‖ ̂𝜽𝐽𝑆 − 𝜽‖2] < 𝔼𝜽[‖𝐙 − 𝜽‖2], for all 𝜽 ∈ ℝ𝑛.

This result is perhaps surprising because ̂𝜽𝐽𝑆 combines information from independent obser-
vations that seemingly have nothing to do with each other. The James-Stein estimator ̂𝜽𝐽𝑆
improves overall estimation accuracy, although it may not necessarily improve accuracy for
every single 𝜃𝑖. It is also important to remark that ̂𝜽𝐽𝑆 is not admissible either.

The idea at the heart of Stein’s proposal, namely that of employing shrinkage to reduce vari-
ance, at the expense of introducing bias, turns out to be a very powerful one that has had
a huge impact on statistical methodology. This is also the key idea in nonparametric func-
tion estimation and many modern statistical models, that essentially involve estimating many
parameters.

Below, we review two intuitive interpretations of the James-Stein estimator. There is also an
empirical Bayes interpretation, which will be discussed in the next section.

3See Keener (2010a, chap. 11.3) for a proof of the admissibility of 𝐙 when 𝑛 = 1. C. Stein (1956) showed the
admissibility of 𝐙 when 𝑝 = 2.

4In fact, it can be shown that 𝐙 is the minimum risk equivariant estimator in this problem; hence any admissible
estimator for 𝑛 ≥ 3 involves an arbitrary choice.

5“That sensational paper had statisticians wondering and asking who W. James was.” Read Everson (2007)
to find out—this article also includes an account by Carl Morris.
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Remark (Intuition for shrinkage — Stein’s motivation (C. Stein 1956)). In Stein’s original work
in 1956, he argued that a good estimator ̂𝜽 of 𝜽 should obey ̂𝜃𝑖 ≈ 𝜃𝑖, and therefore ‖ ̂𝜽‖2 ≈ ‖𝜽‖2.
However, this is not true of the MLE 𝐙. As the coordinates of 𝐙 are independent, informally,
we should expect ‖𝐙‖2 to concentrate around 𝑛 + ‖𝜽‖2 for large 𝑛, as

𝔼𝜽[‖𝐙‖2] =
𝑛

∑
𝑖=1

𝔼𝜽[𝑍2
𝑖 ] =

𝑛
∑
𝑖=1

(𝜃2
𝑖 + 1) = 𝑛 + ‖𝜽‖2.

Since the norm of ‖𝐙‖2 is too large on average, a natural solution is to “shrink” ‖𝐙‖2 towards
zero, which is exactly what ̂𝜽𝐽𝑆 does. Indeed, in James and Stein (1961), the authors consider
a family of estimators indexed by 𝑐:

̂𝜽𝑐 ∶= (1 − 𝑐
‖𝐙‖2 ) 𝐙.

They showed that for all 𝑐 ∈ (0, 2(𝑛 − 2)), 𝑅( ̂𝜽𝑐, 𝜽) < 𝑅(𝐙, 𝜽) holds uniformly.

Remark (Another heuristic to justify “shrinkage”). Another way to interpret Stein’s phe-
nomenon is by thinking about the winner’s curse. In particular, consider the order statistics
𝑍(1), … , 𝑍(𝑛) and the order statistics 𝜃(1), … , 𝜃(𝑛) of 𝜽. Jensen’s inequality tells us that on
average, the largest coordinate of 𝐙 is larger than the largest coordinate of 𝜽:

𝔼[𝑍(𝑛)] = 𝔼[ max
𝑖=1,…,𝑛

𝑍𝑖] ≥ max
𝑖=1,…,𝑛

𝔼[𝑍𝑖] = 𝜃(𝑛),

and similarly, 𝔼[𝑍(1)] < 𝜃(1). As a result, it might make sense to “shrink” the order statistics
(or equivalently 𝐙) towards the sample mean ̄𝑍 ∶= 1

𝑛 ∑𝑛
𝑖=1 𝑍𝑖.

Note that the James-Stein estimator ̂𝜽𝐽𝑆 is a nonlinear, biased estimator; it is not immediate
how one can compute the (frequentist) risk of ̂𝜽𝐽𝑆 to prove Theorem 1. This is the main goal
of this chapter. In particular, we discuss the following: in Section 3.2 we provide an empirical
Bayes interpretation for ̂𝜽𝐽𝑆; in Section 3.3.2 we prove Theorem 3.1, after developing, in
Section 3.3, a very general technique to compute the risk of any ‘smooth’ estimator of 𝜽.

3.2 Empirical Bayes and the James-Stein estimator

3.2.1 The Bayes estimator under a normal prior

Let us consider the following Bayesian formulation in which the unknown parameters are taken
to be random variables: suppose that

𝜃1, … , 𝜃𝑛
𝑖𝑖𝑑∼ 𝑁(0, 𝜏2), and 𝑍𝑖 ∣ 𝜃𝑖

𝑖𝑛𝑑∼ 𝑁(𝜃𝑖, 1), for 𝑖 = 1, … , 𝑛. (3.4)
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Thus, the joint density of (𝐙, 𝜽) at (𝑧1, … , 𝑧𝑛, 𝜃1, … , 𝜃𝑛) is given by

1
(2𝜋𝜏)𝑛 exp[−1

2
𝑛

∑
𝑖=1

(𝑧𝑖 − 𝜃𝑖)2 − 1
2𝜏2

𝑛
∑
𝑖=1

𝜃2
𝑖 ] .

Consider the generalization of the above model where 𝑍𝑖 ∣ 𝜃𝑖 ∼ 𝑁(𝜃𝑖, 𝜎2) are drawn in-
dependently. Show that the marginal distribution of 𝐙 is a product distribution, where
each 𝑍𝑖 is marginally distributed as 𝑁(0, 𝜎2 + 𝜏2). Further, show that the posterior dis-
tribution of 𝜽 given 𝐙 = 𝐙, where 𝐙 = (𝑧1, … , 𝑧𝑛), is also a product measure where each
𝜃𝑖 ∣ 𝐙 = 𝐙 𝑑≡ 𝜃𝑖 ∣ 𝑍𝑖 = 𝑧𝑖 ∼ 𝑁 ( 𝜈

𝜎2 𝑧𝑖, 𝜈); here 𝜈 is such that 1
𝜈 = 1

𝜏2 + 1
𝜎2 = 𝜏2+𝜎2

𝜏2𝜎2 .

It can be shown that the Bayes estimator (that minimizes the Bayes risk under the squared-
error loss) — which is simply the mean of the posterior distribution — is given by

̂𝜽𝐵 ∶= (1 − 1
1 + 𝜏2 ) 𝐙. (3.5)

Thus, the Bayes estimator ̂𝜽𝐵 shrinks the MLE 𝐙 towards 0 ∈ ℝ𝑛, the prior mean. As the
𝑍𝑖’s are independent, each 𝑍𝑖 does not contain any information about 𝜃𝑗, for 𝑗 ≠ 𝑖, but it
DOES contain a lot of information about the parameters of the prior of the 𝜃𝑖’s (i.e., 𝜏2 in
this case).

The following result gives the exact expression of the Bayes risk of ̂𝜽𝐵.

Assume Eq. 3.2 and Eq. 3.4. Then, the Bayes risk of ̂𝜽𝐵 is

min
𝑡(⋅)

𝑅(𝑡, 𝑁(0, 𝜏2)) ≡ 𝑅 ̂𝜽𝐵
= 𝔼[‖ ̂𝜽𝐵 − 𝜽‖2] = 𝑛 𝜏2

𝜏2 + 1 ≡ 𝑅𝐙
𝜏2

𝜏2 + 1,

where 𝑅𝐙 ≡ 𝑛 denotes the risk of the MLE 𝐙.

Proof. Let us first rewrite the difference between the estimator ̂𝜽𝐵 and the parameter 𝜽 as
̂𝜽𝐵 − 𝜽 = (1 − 𝜌)(𝐙 − 𝜽) − 𝜌𝜽,

where 𝜌 = 1
1+𝜏2 . Then, the (frequentist) risk for a fixed value of 𝜽 is

𝔼𝜽‖ ̂𝜽𝐵 − 𝜽‖2 = (1 − 𝜌)2𝔼𝜽‖𝐙 − 𝜽‖2 + 𝜌2‖𝜽‖2 − 2𝜌(1 − 𝜌)𝔼𝜽[(𝐙 − 𝜽)𝜽]
= (1 − 𝜌)2𝑛 + 𝜌2‖𝜽‖2.

Taking an outer expectation and integrating over 𝜽, we get the desired result:

𝑅 ̂𝜽𝐵
= 𝔼[‖ ̂𝜽𝐵 − 𝜽‖2] = 𝑛(1 − 𝜌)2 + 𝑛𝜌2𝜏2 = 𝑛(1 − 𝜌),

as (1 − 𝜌)2 + 𝜌2𝜏2 = 1 − 2𝜌 + 𝜌2(1 + 𝜏2) = 1 − 2𝜌 + 𝜌.

Clearly, 𝑅 ̂𝜽𝐵
< 𝑅𝐙 always. If 𝜏2 = 1, then the Bayes estimator has half the risk as the MLE

𝐙.
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3.2.2 Empirical Bayes interpretation of ̂𝜽𝐽𝑆

As we have seen before, empirical Bayes arguments combine frequentist and Bayesian elements
in analyzing problems of repeated structure. In the Bayesian approach to this problem above,
the choice of 𝜏2 is crucial (as it controls the amount of shrinkage). In an empirical Bayes
approach to estimation, the data are used to estimate parameters of the prior distribution,
which can then be used to approximate the Bayes estimator.

To do this in the current setting, recall that under the Bayesian model, 𝑍1, … , 𝑍𝑛 are i.i.d. from
𝑁(0, 1 + 𝜏2), and thus

‖𝐙‖2 =
𝑛

∑
𝑖=1

𝑍2
𝑖 ∼ (1 + 𝜏2)𝜒2

𝑛,

where 𝜒2
𝑛 is the chi-square distribution with 𝑛 degrees of freedom. To approximate the Bayes

estimator ̂𝜽𝐵 in Eq. 3.5 we need to ‘estimate’ (1 + 𝜏2)−1.

Note that the UMVUE of 1 + 𝜏2 is ‖𝐙‖2/𝑛. Thus, we may want to use ‖𝐙‖2 to estimate
(1 + 𝜏2)−1. In fact, the following can be shown:

𝔼 [𝑛 − 2
‖𝐙‖2 ] = 1

1 + 𝜏2 .

Exercise 3.1. Prove the above!

Thus, an unbiased estimator for the shrinkage factor (1+𝜏2)−1 is 𝑛−2
‖𝐙‖2 which when substituted

in Eq. 3.5 yields the James-Stein estimator ̂𝜽𝐽𝑆 in Eq. 3.3.

Moreover, we can derive the Bayes risk for ̂𝜽𝐽𝑆 in this setting.

Theorem 3.2. Assume that Eq. 3.4 holds. Then,

𝑅 ̂𝜽𝐽𝑆
≡ 𝑅( ̂𝜽𝐽𝑆, 𝑁(0, 𝜏2)) = 𝑛𝜏2

1 + 𝜏2 + 2
1 + 𝜏2 .

Of course this is bigger than the true Bayes risk 𝑛𝜏2
1+𝜏2 , but the penalty is surprisingly modest,

𝑅 ̂𝜽𝐽𝑆

𝑅 ̂𝜽𝐵

= 1 + 2
𝑛𝜏2 .

The shock the James-Stein estimator provided the statistical world didn’t come from the above
display. Note that the calculations above are based on the zero-centric Bayesian model Eq. 3.4,
where the maximum likelihood estimator 𝐙, which doesn’t favor values of 𝜽 near 0, might be
expected to be bested. The rude surprise came from Theorem 3.1 proved by James and Stein
(1961), which we proceed to prove now.
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3.3 Stein’s identity and Stein’s unbiased risk estimator

To prove Theorem 3.1, we will first review Stein’s identity. Along the way, we will review
Stein’s unbiased risk estimator (SURE), which is of independent interest; see C. M. Stein
(1981).

Consider the setting of Eq. 3.2 where 𝜽 = (𝜃1, … , 𝜃𝑛) is unknown (and fixed). Given any
arbitrary estimator ̂𝜽 = ( ̂𝜃1, … , ̂𝜃𝑛) =∶ ℎ(𝐙), for some function ℎ ∶ ℝ𝑛 → ℝ𝑛, of 𝜽, we can
write

‖𝐙 − ̂𝜽‖2 = ‖(𝐙 − 𝜽) − ( ̂𝜽 − 𝜽)‖2

= ‖𝐙 − 𝜽‖2 + ‖ ̂𝜽 − 𝜽‖2 − 2 (𝐙 − 𝜽)⊤( ̂𝜽 − 𝜽),
which implies that (using the fact that 𝔼𝜽‖𝐙 − 𝜽‖2 = 𝑛)

𝑅( ̂𝜽, 𝜽) ≡ 𝔼𝜽‖ ̂𝜽 − 𝜽‖2 = 𝔼𝜽‖𝐙 − ̂𝜽‖2 − 𝑛 + 2 𝔼𝜽[(𝐙 − 𝜽)⊤( ̂𝜽 − 𝜽)]

= 𝔼𝜽‖𝐙 − ̂𝜽‖2 − 𝑛 + 2
𝑛

∑
𝑖=1

Cov𝜽(𝑍𝑖, ̂𝜃𝑖).

The difficulty in simplifying the expression for the risk in the last display is that we need to
compute the expectations of the two terms. C. M. Stein (1981) developed an ingenious way to
tackle this problem when ̂𝜽 ≡ ℎ(𝐙) is an almost differentiable function (to be defined formally
soon). Note that for the James-Stein estimator, ℎ(𝐙) = (1 − 𝑛−2

‖𝐙‖2 )𝐙 which is differentiable.

3.3.1 Stein’s lemmas

The following integration by parts identity will be an important tool in our analysis.

Lemma 3.1 (Stein’s lemma6.). Let 𝑍 ∼ 𝑁(0, 1). Let ℎ ∶ ℝ → ℝ be an absolutely continuous7

function (differentiable is sufficient) such that 𝔼[|ℎ′(𝑍)|] < ∞. Then,

𝔼[ℎ′(𝑍)] = 𝔼[𝑍ℎ(𝑍)]. (3.6)

Proof. First note that if the result holds for a function ℎ it also holds for ℎ plus a constant,
and so we can assume without loss of generality that ℎ(0) = 0. Let 𝜙(𝑧) ∶= 1√

2𝜋𝑒−𝑧2/2, for
𝑧 ∈ ℝ, be the standard normal density. Note that 𝜙(⋅) satisfies the important equality

𝜙′(𝑧) = −𝑧𝜙(𝑧), for 𝑧 ∈ ℝ. (3.7)

6We note that this lemma has a converse, and this has become extremely important in its own right, studied
and further developed in probability theory for proving convergence to normality.

7A function ℎ ∶ ℝ → ℝ is absolutely continuous if and only if ℎ has a derivative ℎ′ almost everywhere and
ℎ(𝑧) − ℎ(𝑎) = ∫𝑧

𝑎 ℎ′(𝑡)𝑑𝑡, for all 𝑎, 𝑧 ∈ ℝ.
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Observe that,

∫
∞

0
ℎ′(𝑦)𝜙(𝑦) 𝑑𝑦 = ∫

∞

0
ℎ′(𝑦) [∫

∞

𝑦
𝑧𝜙(𝑧) 𝑑𝑧] 𝑑𝑦

= ∫
∞

0
ℎ′(𝑦) [∫

∞

0
𝐼(𝑦,∞)(𝑧)𝑧𝜙(𝑧) 𝑑𝑧] 𝑑𝑦

= ∫
∞

0
[∫

∞

0
ℎ′(𝑦)𝑧𝐼(𝑦,∞)(𝑧)𝜙(𝑧) 𝑑𝑦] 𝑑𝑧

= ∫
∞

0
𝑧 [∫

∞

0
𝐼(0,𝑧)(𝑦)ℎ′(𝑦) 𝑑𝑦] 𝜙(𝑧) 𝑑𝑧

= ∫
∞

0
𝑧 [∫

𝑧

0
ℎ′(𝑦) 𝑑𝑦] 𝜙(𝑧) 𝑑𝑧 = ∫

∞

0
𝑧ℎ(𝑧)𝜙(𝑧)𝑑𝑧,

where the first equality follows from Eq. 3.7 and the third equality follows from Fubini’s
theorem (which is justified by the assumption 𝔼[|ℎ′(𝑍)]] < ∞). A similar calculation shows
that ∫0

−∞ ℎ′(𝑦)𝜙(𝑦) 𝑑𝑦 = ∫0
−∞ 𝑧ℎ(𝑧)𝜙(𝑧) 𝑑𝑧. The desired result now follows by adding these

together.

Suppose now that 𝑋 ∼ 𝑁(𝜃, 𝜎2). Then, the above lemma immediately yields8

𝔼[(𝑋 − 𝜃)ℎ(𝑋)] = 𝜎2𝔼[ℎ′(𝑋)]. (3.8)

Remark (Some intuition for Eq. 3.8). The above result, although fairly simple, is quite re-
markable. Suppose that 𝑋 ∼ 𝑁(𝜃, 1), where 𝜃 is unknown, and we had a (potentially) compli-
cated function ℎ(𝑋) delivering an estimate of 𝜃. Suppose further that we wanted to estimate
Cov(𝑋, ℎ(𝑋)) = 𝔼[(𝑋 − 𝜃)ℎ(𝑋)]. To get an unbiased estimate of this covariance, from the def-
inition, we’d have to either know 𝜃, which is unknown, or we’d have to know 𝔼𝜃[ℎ(𝑋)], which
again, will generically depend on the unknown 𝜃 (not to mention that it may be potentially
intractable). On the other hand, Stein’s lemma gives us a simple unbiased estimate: ℎ′(𝑋)!
This is free from 𝜃, and in many cases it is possible to calculate — just take the derivative of
our estimator and evaluate it at the data.

Next let us indicate the regularity conditions needed for the extension of Lemma 3.1 to the
multidimensional case. The following is taken from C. M. Stein (1981).

8Define 𝑍 ∶= (𝑋 − 𝜃)/𝜎 and let ℎ̃(𝑧) ∶= ℎ(𝜎𝑧 + 𝜃). Applying Stein’s lemma to 𝑍 and ℎ̃ now yields the desired
result.
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Definition 3.2 (Almost differentiable function). A function ℎ ∶ ℝ𝑛 → ℝ will be called almost
differentiable9 if there exists a function ∇ℎ ∶ ℝ𝑛 → ℝ𝑛 such that for all 𝑧 ∈ ℝ𝑛,

ℎ(𝑥 + 𝑧) − ℎ(𝑥) = ∫
1

0
𝑧⊤∇ℎ(𝑥 + 𝑡𝑧) 𝑑𝑡, (3.9)

for almost all 𝑥 ∈ ℝ𝑛. Essentially, ∇ℎ(⋅) is the vector differential operator of first partial
derivatives10 with 𝑖-th coordinate ∇𝑖ℎ(⋅) = 𝜕ℎ

𝜕𝑥𝑖
(⋅).

Lemma 3.2. Let 𝐙 = (𝑍1, … , 𝑍𝑛) where 𝑍𝑖 ∼ 𝑁(𝜃𝑖, 1) are independent random variables, for
𝑖 = 1, … , 𝑛. Let ℎ ∶ ℝ𝑛 → ℝ be an almost differentiable function such that 𝔼‖∇ℎ(𝐙)‖ < ∞.
Then,

𝔼[(𝐙 − 𝜽)ℎ(𝐙)] = 𝔼[∇ℎ(𝐙)]. (3.10)

Proof. W.l.o.g. let 𝜽 = 0. Fix some 𝑖 ∈ {1, … , 𝑛} and 𝐙−𝑖 ∈ ℝ𝑛−1. Then, the function
ℎ(⋅, 𝐙−𝑖) is a univariate absolutely continuous function and we can apply Stein’s univariate
lemma. Hence, using the independence of 𝑍𝑖 and 𝐙−𝑖,

𝔼 [ 𝜕ℎ
𝜕𝑧𝑖

(𝐙) ∣ 𝐙−𝑖] = ∫ ∇𝑖ℎ(𝑧, 𝐙−𝑖)𝜙(𝑧) 𝑑𝑧 = ∫ 𝑧ℎ(𝑧, 𝐙−𝑖)𝜙(𝑧) 𝑑𝑧 = 𝔼 [𝑍𝑖ℎ(𝐙) ∣ 𝐙−𝑖] .

Taking an expectation over 𝐙−𝑖 now yields the desired result.

A function ℎ ∶ ℝ𝑛 → ℝ𝑛 is almost differentiable if all its coordinate functions are. Write
ℎ = (ℎ1, … , ℎ𝑛) for the coordinate functions, where each ℎ𝑖 ∶ ℝ𝑛 → ℝ is almost differentiable.
Then, by the last result, for each 𝑖 = 1, … , 𝑛,

𝔼[(𝐙 − 𝜽)ℎ𝑖(𝐙)] = 𝔼[∇ℎ𝑖(𝐙)].

Taking the 𝑖-th equality in the above, and then summing over all 𝑖 = 1, … , 𝑛 yields the following
result.

Lemma 3.3. Let 𝐙 = (𝑍1, … , 𝑍𝑛) where 𝑍𝑖 ∼ 𝑁(𝜃𝑖, 1) are independent random vari-
ables, for 𝑖 = 1, … , 𝑛. Let ℎ ∶ ℝ𝑛 → ℝ𝑛 be an almost differentiable function such that
𝔼𝜽 [∑𝑛

𝑖=1 |∇𝑖ℎ𝑖(𝐙)|] < ∞. Then,

𝑛
∑
𝑖=1

Cov(𝑍𝑖, ℎ𝑖(𝐙)) =
𝑛

∑
𝑖=1

𝔼[(𝑍𝑖 − 𝜃𝑖)ℎ𝑖(𝐙)] = 𝔼 [
𝑛

∑
𝑖=1

𝜕ℎ𝑖
𝜕𝑧𝑖

(𝐙)] . (3.11)

9Observe that Eq. 3.9 indeed reduces to the notion of absolute continuity when 𝑛 = 1.
10Note that an almost differentiable function ℎ has partial derivatives almost everywhere.
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Definition 3.3 (Stein’s unbiased risk estimator). Observe that if ̂𝜽 ≡ ℎ(𝐙) = ( ̂𝜃1, … , ̂𝜃𝑛) is
an almost differentiable function of 𝐙 and Lemma 3.3 is applicable, then Eq. 3.6 immediately
yields an unbiased estimator of the risk 𝑅( ̂𝜽, 𝜽):

𝑅̂ ∶= −𝑛 + ‖𝐙 − ̂𝜽‖2 + 2
𝑛

∑
𝑖=1

𝜕 ̂𝜃𝑖
𝜕𝑧𝑖

(𝐙), (3.12)

i.e.,
𝔼𝜽[𝑅̂] = 𝑅( ̂𝜽, 𝜽). (3.13)

Here 𝑅̂ is called Stein’s unbiased risk estimate (SURE).

Of course, in order for this to be useful, we need to figure out how to compute ∑𝑛
𝑖=1

𝜕 ̂𝜃𝑖
𝜕𝑧𝑖

(𝐙)
for the estimator ̂𝜽 of interest (and, determine that ̂𝜽 is almost differentiable so that Stein’s
lemma is applicable). Note that many statistical estimators (e.g., projections on closed convex
sets11, etc.) satisfy the almost differentiability assumption.

Definition 3.4 (Divergence). The quantity

𝐷 ≡ 𝐷( ̂𝜽) =
𝑛

∑
𝑖=1

𝜕 ̂𝜃𝑖
𝜕𝑧𝑖

(𝐙)

is called the divergence of the estimator ̂𝜽 and provides a measure of the effective dimension
of the fit12 ̂𝜽.

Remark (SURE for model selection). SURE can be an extremely useful quantity. Aside from
plainly estimating the risk of an estimator, we could also use it for model selection purposes:
if our estimator depended on a tuning parameter 𝜆 ∈ Λ, denoted ̂𝜽𝜆, then we could choose
this parameter to minimize SURE:

𝜆̂ ∶= argmin
𝜆∈Λ

{‖𝐙 − ̂𝜽𝜆‖2 + 2
𝑛

∑
𝑖=1

𝜕 ̂𝜃𝜆,𝑖
𝜕𝑧𝑖

(𝐙)} .

There is a considerable amount of classic literature that studies the minimization of a SURE-
like risk estimate, for relatively simple procedures (such as linear smoothers) where the diver-
gence is easily computable. Examples are: (K.-C. Li 1985, 1986, 1987; Donoho and Johnstone
1995; Meyer and Woodroofe 2000; Bradley Efron, Hastie, Johnstone, and Tibshirani 2004;
Tibshirani and Taylor 2012). Xie, Kou, and Brown (2012) use SURE to estimate the shrinkage
parameter in the heteroscedastic analogue of the Gaussian hierarchical model Eq. 3.4, and also
show a kind of asymptotic optimality property for the SURE estimator.
11It is well-known that the projection operator onto a closed convex set in 1-Lipschitz. Further, any Lipschitz

continuous function ℎ is almost differentiable with a bounded gradient (see e.g., Meyer and Woodroofe (2000)
). Thus, projections on closed convex sets are almost differentiable.

12To see, observe that if ̂𝜽 is a linear projection onto a space of dimension 𝑑, say ̂𝜽 = 𝑄𝐙, where 𝑄 is a 𝑛 × 𝑛
projection matrix, then 𝐷( ̂𝜽) = tr(𝑄) = 𝑑, for all 𝐙 ∈ ℝ𝑛.
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3.3.2 Risk of the James-Stein estimator

Now let us use the above results to find the risk of the James-Stein estimator ̂𝜽𝐽𝑆 ≡ ℎ(𝐙)
(see Eq. 3.3). Here, ℎ𝑖(𝑥) = 𝑥𝑖 − (𝑛−2)𝑥𝑖

𝑥2
1+…+𝑥2𝑛

, for 𝑥 ∈ ℝ. Then,

𝜕ℎ𝑖(𝑥)
𝜕𝑥𝑖

= 1 − 𝑛 − 2
𝑥2

1 + … + 𝑥2𝑛
+ (𝑛 − 2)𝑥𝑖(2𝑥𝑖)

(𝑥2
1 + … + 𝑥2𝑛)2 = 1 − 𝑛 − 2

‖𝑥‖2 + 2(𝑛 − 2)𝑥2
𝑖

‖𝑥‖4 ,

and thus,
𝑛

∑
𝑖=1

𝜕ℎ𝑖
𝜕𝑧𝑖

(𝐙) = 𝑛 − 𝑛(𝑛 − 2)
‖𝐙‖2 + 2(𝑛 − 2) ∑𝑛

𝑖=1 𝑍2
𝑖

‖𝐙‖4 = 𝑛 − (𝑛 − 2)2

‖𝐙‖2 .

Thus, for the James-Stein estimator, using Eq. 3.12, we have

𝑅̂ = 𝑛 + (𝑛 − 2)2

‖𝐙‖2 − 2(𝑛 − 2)2

‖𝐙‖2 = 𝑛 − (𝑛 − 2)2

‖𝐙‖2 .

By Eq. 3.13,

𝑅(𝜽, ̂𝜽𝐽𝑆) = 𝔼𝜽[𝑅̂] = 𝐸𝜽 [𝑛 − (𝑛 − 2)2

‖𝐙‖2 ] < 𝑛 ≡ 𝑅(𝜽, 𝐙).

Hence when 𝑛 > 2, the James-Stein estimator always has smaller compound risk than the
MLE 𝐙; thus 𝐙 is inadmissible.

When ‖𝜽‖ is large, ‖𝐙‖ will be large with high probability. Then the James-Stein estimator
and 𝐙 will be very similar and will have similar risk. But when ‖𝜽‖ is small there can be
a substantial decrease in risk using the James-Stein estimator instead of 𝐙. If 𝜽 = 0, then
‖𝐙‖2 = ∑𝑛

𝑖=1 𝑍2
𝑖 ∼ 𝜒2

𝑛. We can show that 𝔼𝜽=0 [ 1
‖𝐙‖2 ] = 1

𝑛−2 . Using this, we get

𝑅(0, ̂𝜽𝐽𝑆) = 𝔼𝜽=0[𝑅̂] = 𝐸𝜽 [𝑛 − (𝑛 − 2)2

‖𝐙‖2 ] = 𝑛 − (𝑛 − 2)2

𝑛 − 2 = 2.

Thus, regardless of the dimension of 𝜽 and 𝐙, at the origin 𝜽 = 0, the James-Stein estimator
has risk equal to two.

In the more general compound case, we note that the risk of the James-Stein estimator depends
only on 𝑛 and ‖𝜽‖2

2. Casella and Hwang (1982) derive the following interpretable bounds valid
for any 𝑛 ≥ 3:

𝑛(2 + ‖𝜽‖2
2)

𝑛 + ‖𝜽‖2
2

≤ 𝑅(𝜽, ̂𝜽𝐽𝑆) ≤ 𝑛(2 + ‖𝜽‖2
2) − 4

𝑛 − 2 + ‖𝜽‖2
2

.

Note that the above inequalities are tight for 𝜽 = 0 as shown by our previous calculations.
Furthermore these inequalities demonstrate formally that 𝑅(𝜽, ̂𝜽𝐽𝑆) ∼ 𝑛 when ‖𝜽‖2

2 is large,
and also that substantial risk savings are possible when ‖𝜽‖2

2 is small.
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Since 𝑅(𝜽, ̂𝜽𝐽𝑆) only depends on 𝑛 and ‖𝜽‖2
2, we can compute it explicitly numerically. Hence

we can plot a Figure analogous to Figure 1.1 in Chapter 1.
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Figure 3.1: Risk functions for compound estimation of 𝜃𝑖 based on 𝑍𝑖 ∼ 𝒩(𝜃𝑖, 1), 𝑖 = 1, … , 𝑛.

3.4 Extensions and generalizations

3.4.1 Shrinking Toward an Arbitrary Point

Thus far, we have considered estimators that shrink toward zero, but we need not do so. As
it turns out, we can shrink toward an arbitrary point 𝜽0 ∈ ℝ𝑛. Define the estimator

̂𝜽𝜽0
𝐽𝑆 ∶= 𝜽0 + (1 − 𝑛 − 2

‖𝐙 − 𝜽0‖2 ) (𝐙 − 𝜽0).

Then, ̂𝜽𝜽0
𝐽𝑆 also dominates the MLE 𝐙 everywhere13.

This observation turns out to be remarkably useful. Green and Strawderman (1991) build on
this observation and develop a method for combining biased and unbiased measurements 𝑍𝑖:
they shrink the unbiased measurements toward the location given by the biased measurements.
Ignatiadis and Wager (2019) build on this result and shrink toward predictions from arbitrary
machine learning models.

13The see this consider 𝐘 ∶= 𝐙 − 𝜽0. Then 𝐘 ∼ 𝑁(𝜽 − 𝜽0, 𝐼𝑛), and ̂𝜽𝜽0
𝐽𝑆 ≡ ̂𝜽𝜽0

𝐽𝑆(𝐙) = 𝜽0 + ̂𝜽𝐽𝑆(𝐘). Then, for
any 𝜽 ∈ ℝ𝑛,

𝑅( ̂𝜽𝜽0
𝐽𝑆, 𝜽) = 𝔼𝜽‖ ̂𝜽𝜽0

𝐽𝑆(𝐙) − 𝜽‖2 = 𝔼𝜽‖ ̂𝜽𝐽𝑆(𝐘) − (𝜽 − 𝜽0)‖2

= 𝑅( ̂𝜽𝐽𝑆, 𝜽 − 𝜽0) < 𝑅(𝐘, 𝜽 − 𝜽0) = 𝑅(𝐙, 𝜽).
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3.4.2 Shrinking towards the group mean: An empirical Bayes approach

In practice, instead of arbitrarily picking some point 𝜽0 ∈ ℝ𝑛, it might make sense to chose
𝜽0 ∶= ( ̄𝑍, ̄𝑍, … , ̄𝑍) ∈ ℝ𝑛 (where ̄𝑍 ∶= ∑𝑛

𝑖=1 𝑍𝑖 is mean of the observed 𝑍𝑖’s) so as to adapt to
the true center of the 𝜃𝑖’s.

Assume the following Bayesian setup:

𝜃𝑖
𝑖𝑖𝑑∼ 𝑁(𝜃0, 𝜏2) and 𝑍𝑖 ∣ 𝜃𝑖

𝑖𝑛𝑑∼ 𝑁(𝜃𝑖, 1), for 𝑖 = 1, … , 𝑛,

and unknown 𝜃0 ∈ ℝ and 𝜏 > 0. The marginal distribution of our data is

𝑍𝑖
𝑖𝑖𝑑∼ 𝑁(𝜃0, 𝜏2 + 1),

and the posterior distribution of the parameters are

𝜃𝑖 ∣ 𝑍𝑖
𝑖𝑛𝑑∼ 𝑁(𝜃0 + (1 − 𝜌)(𝑍𝑖 − 𝜃0), 1 − 𝜌), where 𝜌 = (1 + 𝜏2)−1.

Here 𝜃0 + (1 − 𝜌)(𝑍𝑖 − 𝜃0) is the Bayes estimator for 𝜃𝑖, but 𝜃0 and 𝜌 are unknown.

Taking an empirical Bayes approach, we can use the unbiased estimator ̄𝑍 of 𝜃0 to estimate
𝜃0 and use 𝑆 ∶= ∑𝑛

𝑖=1(𝑍𝑖 − ̄𝑍)2 to estimate 𝜏2. In particular, note that 𝑆 ∼ (1 + 𝜏2)𝜒2
𝑛−1, and

thus, 𝔼 [𝑛−3
𝑆 ] = (1 + 𝜏2)−1. This gives us ̂𝜽 ̄𝑍1

𝐽𝑆—the empirical Bayes estimator of 𝜽—where the
𝑖-th coordinate of ̂𝜽 ̄𝑍1

𝐽𝑆 is

̂𝜽 ̄𝑍1
𝐽𝑆(𝑖) = ̄𝑍 + (1 − 𝑛 − 3

𝑆 ) (𝑍𝑖 − ̄𝑍), for 𝑖 = 1, … , 𝑛.

If 𝑛 > 3, this estimator dominates the MLE everywhere.

3.5 Bibliographic Remarks

The material in this chapter follows closely the beautiful lecture notes by Emmanuel Candès for
the class “STATS300C: Theory of Statistics” taught at Stanford University. The lecture notes
are available at the following link: https://candes.su.domains/teaching/stats300c/index.html
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4 Understanding and improving James-Stein
through regression

In this chapter we will explore how linear regression and the class of linear estimators can
shed light into the operating mechanisms of the James-Stein procedure, and also lead to more
practical and powerful methods in practice.

It is worth emphasizing that it is also fruitful to study the reverse question: can we use James-
Stein to improve statistical performance when conducting linear regression. This is not the
topic of this chapter, but we will pursue this question later.

4.1 James-Stein and restricted empirical Bayes

In revisiting James-Stein, it is instructive to consider the empirical Bayes motivation thereof.
Recall that we seek to estimate parameters 𝜃1, … , 𝜃𝑛 well in squared error loss and have have
access to standard normal measurements 𝑍𝑖 ∣ 𝜃𝑖 ∼ 𝒩(𝜃𝑖, 1).
Consider the following class of priors:

𝒢scale ∶= {𝒩(0, 𝐴) ∶ 𝐴 ≥ 0} .

Given any prior 𝐺 = 𝒩(0, 𝐴) ∈ 𝒢scale,

𝑡𝐺(𝑧) ∶= 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] = 𝐴
𝐴 + 1𝑍, where 𝜃 ∼ 𝐺, 𝑍 ∣ 𝜃 ∼ 𝒩(𝜃, 1).

This the optimal decision for estimating 𝜃 with squared error loss. Given 𝑛 parallel draws
𝑍𝑖 ∼ 𝒩(𝜃𝑖, 1), we saw that James-Stein essentially estimates a suitable prior1

𝐺𝐽𝑆 = 𝒩 (0, 𝐴𝐽𝑆) , 𝐴𝐽𝑆 = 1 − (𝑛 − 2)
‖𝐙‖2 ,

from 𝒢scale and then lets ̂𝜃𝑖 = 𝔼𝐺𝐽𝑆 [𝜃𝑖 ∣ 𝑍𝑖].

1The interpretation below fails when 𝐴𝐽𝑆 < 0. To avoid such cases one would instead use the positive-part
James-Stein estimator: in the definition that follows, one replaces 𝐴𝐽𝑆 by 𝐴𝐽𝑆+ = max{𝐴𝐽𝑆, 0}. In fact it
can be shown that the positive part James-Stein estimator dominates the regular James-Stein estimator.
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here is another useful interpretation: any 𝐺 ∈ 𝒢scale defines a Bayes-optimal decision rule 𝑡𝐺(⋅).
Scanning over all 𝐺 ∈ 𝒢scale we get:

ℒscale = {𝑡𝐺(⋅) ∶ 𝐺 ∈ 𝒢scale} = {𝑧 ↦ 𝜆 ⋅ 𝑧 ∶ 𝜆 ∈ [0, 1)} .

Notice that the RHS is merely a class of estimators, and once this connection has been made,
we may forget that we ever posited the empirical Bayes model with 𝜃 ∼ 𝐺 ∈ 𝒢scale. Instead,
we may change our goal post to the following task: choose the best estimator 𝑡𝜆(⋅) in the class
ℒscale.

The next proposition derives “oracle” choices of 𝑡𝜆(⋅).

4.1.1 Optimal linear estimators

Proposition 4.1.

1. (Empirical Bayes) Suppose that 𝜃 ∼ 𝐺 with 𝔼𝐺 [𝜃2] < ∞, and that 𝔼 [𝑍 ∣ 𝜃] = 𝜃,
Var [𝑍 ∣ 𝜃] = 1. Then for the Bayes risk, under squared error loss, 𝑅(𝑡, 𝜃) =
𝔼𝐺 [(𝜃 − 𝑡(𝑍))2] is minimized over 𝑡 ∈ ℒscale by:

𝑡𝜆∗,𝐵(⋅), where 𝜆∗,𝐵 = 𝔼𝐺 [𝜃2]
𝔼𝐺 [𝑍2] = 1 − 1

𝔼𝐺 [𝑍2]

2. (Compound decisions) Now we assume that 𝜽 = (𝜃1, … , 𝜃𝑛) is fixed, but continue to
impose that 𝔼 [𝑍𝑖 ∣ 𝜃𝑖] = 𝜃𝑖, Var [𝑍𝑖 ∣ 𝜃𝑖] = 1. Then if we look at compound loss 𝑅(𝑡, 𝜽) =
1
𝑛𝔼𝜽 [∑𝑛

𝑖=1(𝜃𝑖 − 𝑡(𝑍𝑖))2] is minimized over 𝑡 ∈ ℒscale by:

𝑡𝜆∗,𝐶(⋅), where 𝜆∗,𝐶 = ‖𝜽‖2

𝔼𝜽 [‖𝐙‖2]
= 1 − 𝑛

𝔼𝜽 [‖𝐙‖2
2]

.

Proof. Let us start with the first result. We seek to minimize:

𝔼𝐺 [(𝜃 − 𝜆𝑍)2] = 𝔼𝐺 [𝜃2] + 𝜆2𝔼𝐺 [𝑍2] − 2𝜆𝔼𝐺 [𝜃2] .

This is a quadratic and we immediately find that:

𝜆∗,𝐵 = 𝔼𝐺 [𝜃2]
𝔼𝐺 [𝑍2] = 𝔼𝐺 [𝜃2]

𝔼𝐺 [𝜃2] + 1 = 1 − 1
𝔼𝐺 [𝑍2] . (4.1)

For the compound result, we instead expand:
𝑛

∑
𝑖=1

𝔼𝜽 [(𝜃𝑖 − 𝜆𝑍𝑖)2] =
𝑛

∑
𝑖=1

(𝜃2
𝑖 + 𝜆2𝔼𝜃𝑖

[𝑍2
𝑖 ] − 2𝜆𝜃2

𝑖 ) .
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Again minimizing the above quadratic we find that:

𝜆∗,𝐶 = ‖𝜽‖2
2

𝔼𝜽 [‖𝐙‖2]
= 1 − 𝑛

𝔼𝜽 [‖𝐙‖2]
.

A take-home message from the above results is the following: the James-Stein estimator may
be seen to approximate both oracle estimators in the proposition above. Furthermore, one
may hope that James-Stein will perform well even if 𝑍 ∣ 𝜃 is not Gaussian—it suffices that the
specification of first two moments is correct (conditionally on 𝜃).

4.1.2 Competing against the best linear estimator through SURE

Suppose now that we seek to match the best linear estimator in the class ℒscale. Recall from
the previous chapter that (under Gaussian noise) we can estimate the compound mean squared
error of any estimator (that satisfies almost differentiability) through SURE (Stein’s Unbiased
Risk estimate). For the estimator with ̂𝜃𝑖 = 𝜆 ⋅ 𝑍𝑖 we have that 𝜕 ̂𝜃𝑖

𝜕𝑧𝑖
= 𝜆 and so we see that

SURE is equal to:2
𝑅(𝑡𝜆) = −1 + (1 − 𝜆)2 ‖𝐙‖2

2 /𝑛 + 2𝜆. (4.2)

It holds that 𝔼𝜽 [𝑅(𝑡𝜆)] = 𝑅(𝑡𝜆, 𝜽).

Exercise 4.1. The unbiasedness of the expression in Eq. 4.2 requires only conditional moments
given 𝜃𝑖. In particular, prove that as long as 𝔼𝜃𝑖

[𝑍𝑖] = 𝜃𝑖 and Var𝜃𝑖
[𝑍𝑖] = 1, then:

𝔼𝜽 [𝑅(𝑡𝜆)] = 𝑅(𝑡𝜆, 𝜽).

In fact, we can prove that SURE is a good estimator of the true risk uniformly over all
𝜆 ∈ [0, 1].

Proposition 4.2. Suppose all 𝑍𝑖 are independent and that 𝔼𝜃𝑖
[𝑍𝑖] = 𝜃𝑖 and Var𝜃𝑖

[𝑍𝑖] = 1.
If it also holds that:

1
𝑛2

𝑛
∑
𝑖=1

𝜃2
𝑖 → 0 as 𝑛 → ∞,

and that:
max

𝑖
𝔼𝜃𝑖

[|𝑍𝑖 − 𝜃𝑖|
4] < ∞,

2Compared to the previous chapter, we have rescaled SURE and the compound loss by a factor 1/𝑛.
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then:

𝔼𝜽 [ sup
𝜆∈[0,1]

∣𝑅(𝑡𝜆) − 𝑅(𝑡𝜆, 𝜽)∣] → 0 as 𝑛 → ∞.

In fact, we also get convergence of the actual loss:

𝔼𝜽 [ sup
𝜆∈[0,1]

∣𝑅(𝑡𝜆) − ℓ(𝑡𝜆, 𝜽)∣] → 0 as 𝑛 → ∞,

where ℓ(𝑡𝜆, 𝜽) = 1
𝑛 ∑𝑛

𝑖=1(𝜃𝑖 − 𝑡𝜆(𝑍𝑖))2.

Proof. One can check that:

𝑅(𝑡𝜆) − 𝑅(𝑡𝜆, 𝜽) = (1 − 𝜆)2 ‖𝐙‖2
2

𝑛 − (1 − 𝜆)2 𝔼𝜽 [‖𝐙‖2
2]

𝑛 .

Hence:

sup
𝜆∈[0,1]

∣𝑅(𝑡𝜆) − 𝑅(𝑡𝜆, 𝜽)∣ = ∣ 1
𝑛

𝑛
∑
𝑖=1

(𝑍2
𝑖 − 𝔼𝜃𝑖

[𝑍2
𝑖 ])∣ .

To study the above quantity, let us write 𝜀𝑖 = 𝑍𝑖 − 𝜃𝑖. Then:

𝑍2
𝑖 − 𝔼𝜃𝑖

[𝑍2
𝑖 ] = 𝜀2

𝑖 − 1 + 2𝜃𝑖𝜀𝑖.

It thus suffices to prove the following. First:

1
𝑛

𝑛
∑
𝑖=1

𝜃𝑖𝜀𝑖
𝐿1→ 0 as 𝑛 → ∞.

This follows e.g., by applying the Cauchy-Schwarz inequality after noting that the above has
expectation equal to 0, and that

Var [ 1
𝑛

𝑛
∑
𝑖=1

𝜃𝑖𝜀𝑖] = 1
𝑛2

𝑛
∑
𝑖=1

𝜃2
𝑖 ,

where the latter converges to 0 by assumption. Furthermore:

1
𝑛

𝑛
∑
𝑖=1

𝜀2
𝑖 − 1

𝐿1→ 0 as 𝑛 → ∞.

This follows again by Cauchy-Schwarz after noting that 𝔼𝜃𝑖
[𝜀2

𝑖 ] = 1 and that:

Var [ 1
𝑛

𝑛
∑
𝑖=1

𝜀2
𝑖 ] = 1

𝑛2

𝑛
∑
𝑖=1

Var [𝜖2
𝑖 ] ≤ 1

𝑛2

𝑛
∑
𝑖=1

𝔼𝜃𝑖
[𝜀4

𝑖 ] = 1
𝑛2 ∑

𝑖=1𝑛
𝔼𝜃𝑖

[(𝑍𝑖 − 𝜃𝑖)4] ,
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and the latter converges to 0 by our second assumption.

To prove the second part of the proposition, it suffices to use the triangle inequality and to
argue that:

𝔼𝜽 [ sup
𝜆∈[0,1]

|ℓ(𝑡𝜆, 𝜽) − 𝑅(𝑡𝜆, 𝜽)|] → 0 as 𝑛 → ∞.

The argument is analogous.

As we mentioned last week, one generally applicable model selection strategy is given by
minimizing SURE. Hence (instead of doing, e.g., James-Stein) we could use the estimator
𝑡𝜆̂SURE , where:

𝜆̂SURE ∈ argmin
𝜆∈[0, 1]

𝑅(𝑡𝜆).

In the present setting we can immediately compute that:

𝜆̂SURE = max{0, 1 − 𝑛
‖𝐙‖2

2
} .

The resulting estimator then is:
̂𝜃SURE
𝑖 = 𝜆̂SURE ⋅ 𝑍𝑖.

Notice that this is almost equal to the James-Stein estimator (two differences: we do not let the
shrinkage factor be < 0 and second, we replace the factor 𝑛 − 2 in the James-Stein estimator
by 𝑛)—both are typically of little consequence in practice.

Hence one can think of SURE being applicable to James-Stein in two ways:3

1. James-Stein may be derived (modulo the minor caveat above) by minimizing SURE over
the class of linear estimators ℒscale.

2. SURE can be used to estimate and theoretically assess the risk of James-Stein.

With Proposition 4.2, we can now prove the following asymptotic result for ̂𝜽SURE.

Theorem 4.1.
lim sup

𝑛→∞
(𝑅( ̂𝜽SURE, 𝜽) − inf

𝜆∈[0,1]
𝑅(𝑡𝜆(⋅), 𝜽)) ≤ 0.

3This perspective is further pursued by Tibshirani and Rosset (2019).
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Proof. Let 𝜆∗
𝑛 be such that:

𝑅(𝑡𝜆∗𝑛
, 𝜽) = inf

𝜆∈[0,1]
𝑅(𝑡𝜆, 𝜽).

Then:

ℓ(𝑡𝜆̂SURE , 𝜽) − ℓ(𝑡𝜆∗𝑛
(⋅), 𝜽)

= (ℓ(𝑡𝜆̂SURE , 𝜽) − 𝑅(𝑡𝜆̂SURE)) − (ℓ(𝑡𝜆∗𝑛
, 𝜽) − 𝑅(𝑡𝜆∗𝑛

)) + (𝑅(𝑡𝜆̂SURE) − 𝑅(𝑡𝜆∗𝑛
))⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤0

≤ 2 sup
𝜆∈[0,1]

∣𝑅(𝑡𝜆) − ℓ(𝑡𝜆, 𝜽)∣ .

Taking expectations:

𝑅(𝑡𝜆̂SURE , 𝜽) − 𝑅(𝑡𝜆∗𝑛
(⋅), 𝜽) ≤ 2𝔼𝜽 [ sup

𝜆∈[0,1]
∣𝑅(𝑡𝜆) − ℓ(𝑡𝜆, 𝜽)∣] ,

and the RHS converges to 0 by Proposition 4.2.

Exercise 4.2. Suppose our working class of priors is given by:

𝒢loc-scale ∶= {𝒩(𝑢, 𝐴) ∶ 𝑢 ∈ ℝ, 𝐴 > 0} .

Then the induced class of estimators is given by:

ℒloc-scale = {𝑡𝐺(⋅) ∶ 𝒢loc-scale} = {𝑧 ↦ 𝑎 + 𝜆 ⋅ 𝑧 ∶ 𝑎 ∈ ℝ, 𝜆 ∈ [0, 1]} .

Rederive/state analogues of results in the section for this broader class of estimators.

4.2 James-Stein and regression to the mean

So far, we have provided intuition and rigorous justification for the James-Stein estimator
through the lens of Charles Stein, as well as Efron and Morris. Stigler (1990) asked the
following question: can the James-Stein phenomenon be explained in a way that would make
sense to statisticians that lived a century before Stein? Stigler’s answer is affirmative.
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4.2.1 The Efron-Morris baseball dataset

Before formally explaining Stigler’s perspective, we informally demonstrate his ideas through
a very famous application of empirical Bayes; namely to baseball statistics. Bradley Efron
and Morris (1975) considered a dataset of 18 Major League baseball players during the 1970
season. At the start of the season, each of the 18 players in the dataset had 45 at bats and
batting average 𝑌𝑖. Efron and Morris asked the following question: how should we predict the
batting average of these 18 players at the end of the season? One way to formalize the result is
as follows. Each player has a true “batting rate” 𝑝𝑖, and we observe a binomial sample thereof
with 45 trials—each at-bat is a trial:

45 ⋅ 𝑌𝑖 ∣ 𝑝𝑖 ∼ Binomial(45, 𝑝𝑖). (4.3)

Bradley Efron and Morris (1975) further posited that at the end of the season 𝑝𝑖 could be
estimated sufficiently accurately based on the data from the remainder of the season. The first
three columns of the following table show the data:

Table 4.1: Baseball dataset of Efron-Morris

Name InitialBattingAvg RemainingBattingAvg Z �
Roberto Clemente 0.4 0.346 -1.351 -2.1
Frank Robinson 0.378 0.298 -1.657 -2.788
Frank Howard 0.356 0.276 -1.966 -3.11
Jay Johnstone 0.333 0.222 -2.28 -3.958
Ken Berry 0.311 0.273 -2.599 -3.166
Jim Spencer 0.311 0.27 -2.599 -3.2
Don Kessinger 0.289 0.264 -2.924 -3.29
Luis Alvarado 0.267 0.21 -3.257 -4.149
Ron Santo 0.244 0.269 -3.599 -3.228
Ron Swaboda 0.244 0.23 -3.599 -3.827
Rico Petrocelli 0.222 0.264 -3.951 -3.299
Ellie Rodriguez 0.222 0.226 -3.951 -3.894
George Scott 0.222 0.303 -3.951 -2.711
Del Unser 0.222 0.264 -3.951 -3.305
Billy Williams 0.222 0.33 -3.951 -2.329
Bert Campaneris 0.2 0.285 -4.317 -2.983
Thurman Munson 0.178 0.316 -4.698 -2.525
Max Alvis 0.156 0.2 -5.098 -4.317

Efron and Morris sought to conduct shrinkage using James-Stein. To transform
Eq. 4.3 to approximate Gaussianity, they considered the variance stabilizing function
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ℎ(𝑝) =
√

45 arcsin(2𝑝 − 1). Then letting 𝑍𝑖 = ℎ(𝑌𝑖) and 𝜃𝑖 = ℎ(𝑝𝑖), it approximately holds
that:

𝑍𝑖 ∣ 𝜃𝑖 ∼ 𝒩(𝜃𝑖, 1).
Let us first compare the performance of the naive method in terms of the squared error loss
in estimating 𝜃𝑖:

naive_error = round(mean(abs2, tbl.θ .- tbl.Z), digits=2)
naive_error

1.11

What about James-Stein?

z_bar = mean(tbl.Z)
shrinkage_factor = 1-(18-3) / sum(abs2, tbl.Z .- z_bar)
js_fit = shrinkage_factor .* tbl.Z .+ (1 .- shrinkage_factor) .* z_bar
js_error = round(mean(abs2, tbl.θ .- js_fit), digits=2)
js_error

0.35

Perhaps the gains on this scale may seem to be contrived—we are interested in the 𝑝𝑖 after all
and not 𝜃𝑖. We can turn the James-Stein estimates ̂𝜃𝐽𝑆

𝑖 for 𝜃𝑖 into estimates for 𝑝𝑖 by inverting
the variance stabilizing transformation, that is, by estimating 𝑝𝑖 by ℎ−1( ̂𝜃𝐽𝑆

𝑖 ). What is the
absolute error loss in estimating 𝑝𝑖 by the initial batting average?

naive_error_batting_scale = round(
mean(abs, tbl.RemainingBattingAvg .- tbl.InitialBattingAvg), digits=3

)
naive_error_batting_scale

0.059

What is the absolute error loss after mapping the James-Stein estimates to the correct scale?

inv_arcsine(z) = (sin(z/sqrt(45)) + 1)/2
js_error_batting_scale = round(

mean(abs, tbl.RemainingBattingAvg .- inv_arcsine.(js_fit)), digits=3
)
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js_error_batting_scale

0.03

A lovely demonstration of the practical gains that are possible through James-Stein shrinkage!
However let us now turn to our initial goal: demonstrating Stigler’s argument based on this
dataset. His argument is captured by Figure 4.1.

There are 18 points in Figure 4.1, each one corresponds to the (𝑍𝑖, 𝜃𝑖) pairs of the different
players. In a practical application, we would only observe 𝑍𝑖 and not 𝜃𝑖 (we seek to estimate
𝜃𝑖)—thus everything that follows is a thought experiment. In the figure we also plot three
lines.

1. We plot in grey the identity line (with intercept 0 and slope 1). The points on this line
correspond to estimating 𝜃𝑖 by 𝑍𝑖 (i.e., the traditional maximum likelihood approach).
Under our model assumptions, it holds that 𝔼 [𝑍 ∣ 𝜃] = 𝜃, hence equivalently the identity
line corresponds to the regression 𝑍 ∼ 𝜃.

2. Imagine now that we actually could observe the 𝜃𝑖. We seek to predict these (or get
a good fit as possible) by a linear function of the 𝑍𝑖. Stigler notes that this would
theoretically be accomplished through the regression 𝔼 [𝜃𝑖 ∣ 𝑍𝑖] and not the regression
𝔼 [𝑍𝑖 ∣ 𝜃𝑖]. In our hypothetical setting here we can estimate 𝔼 [𝜃𝑖 ∣ 𝑍𝑖] by running the
linear regression 𝜃𝑖 ∼ 𝑍𝑖; this is what the purple line shows. Statisticians a century
before Stein, e.g., Galton, already knew of the regression to the mean phenomenon: the
purple line (and not the gray line) is the correct line with which to predict 𝜃𝑖 based on
𝑍𝑖.

3. Unfortunately the OLS line discussed above is an “oracle estimator”; it requires access
to the unobserved 𝜃𝑖. Stigler argued that James-Stein seeks to mimic the oracle OLS
line without access to 𝜃𝑖. The last line of the figure, shown in green, visualizes exactly
the line corresponding to James-Stein (that shrinks toward the grand mean). As we can
see, James-Stein does a remarkable job of almost tracking the oracle OLS line.

4.2.2 Stigler’s formal argument

Stigler (1990) turned the above conceptual argument to a formal argument as follows. For the
Baseball example we applied James-Stein that shrinks toward the grand mean. Here instead
for simplicity we will make this argument rigorous for James-Stein that shrinks toward 0.4

One way to motivate Stigler’s argument is through analogy to Proposition 4.1. Therein we
derived the optimal choice of 𝜆 such that 𝑡𝜆(⋅) performs well in terms of risk (expected loss).

4Stigler (1990) included rigorous proofs for both cases.
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Figure 4.1: Visualization of Stigler’s interpretation of James-Stein based on the Efron-Morris
baseball dataset.

59



Instead, we may ask a more ambitious question: what is the 𝜆 that minimizes the “in-sample”
loss, that is, what is the value of 𝜆 such that:

𝜆̂ ∈ argmin{ 1
𝑛

𝑛
∑
𝑖=1

(𝜃𝑖 − 𝜆𝑍𝑖)2} .

The reader will notice that the above is an ordinary linear regression (OLS) problem without
intercept, and so:

̂𝛽𝑂𝐿𝑆 ∶= 𝜆̂ = ∑𝑛
𝑖=1 𝜃𝑖𝑍𝑖

∑𝑛
𝑖=1 𝑍2

𝑖
. (4.4)

Above we switched notation from 𝜆̂ to ̂𝛽𝑂𝐿𝑆 to make the connection to linear regression more
explicit. Then Stigler considers estimating 𝜽 by:

̂𝜽𝑂𝐿𝑆 = ̂𝛽𝑂𝐿𝑆𝐙. (4.5)

Eq. 4.4 fits an oracle regression; in reality we would never observe 𝜃𝑖 (these are the quantities
we seek to estimate). However, Stigler argued that James-Stein essentially seeks to mimic
Eq. 4.4.

To this end, notice that we may express the MLE that estimates 𝜃𝑖 by 𝑍𝑖 as follows:
̂𝜽𝑀𝐿𝐸 = 𝑏𝑀𝐿𝐸𝐙, 𝑏𝑀𝐿𝐸 ∶= 1.

The James-Stein estimates may be written as:

̂𝜽𝐽𝑆 = 𝑏𝐽𝑆𝐙, 𝑏𝐽𝑆 ∶= 1 − 𝑛 − 2
∑𝑛

𝑖=1 𝑍2
𝑖

.

Stigler’s argument boils down to the following: 𝑏𝐽𝑆 is better at approximating ̂𝛽𝑂𝐿𝑆 than
𝑏𝑀𝐿𝐸 is. At a heuristic level note that 𝔼𝜃𝑖

[𝑍𝑖] = 𝜃𝑖 and that 𝔼𝜃𝑖
[𝑍2

𝑖 ] = 1 + 𝜃2
𝑖 , so that:

̂𝛽𝑂𝐿𝑆 = ∑𝑛
𝑖=1 𝜃𝑖𝑍𝑖

∑𝑛
𝑖=1 𝑍2

𝑖
≈ ∑𝑛

𝑖=1 𝜃2
𝑖

∑𝑛
𝑖=1 𝑍2

𝑖
≈ 1 − 𝑛

∑𝑛
𝑖=1 𝑍2

𝑖
≈ 𝑏𝐽𝑆.

Let us now turn the above intuitions into a second rigorous proof of Theorem 3.1 (in Chap-
ter 3).

Proof. Consider any estimator of the form 𝑏𝑍𝑖 for 𝜃𝑖, wherein 𝑏 may depend on all of
(𝑍1, … , 𝑍𝑛). Then:

‖𝜽 − 𝑏𝐙‖2 = ∥𝜽 − ̂𝛽𝑂𝐿𝑆𝐙 + ̂𝛽𝑂𝐿𝑆𝐙 − 𝑏𝐙∥
2

= ∥𝜽 − ̂𝛽𝑂𝐿𝑆𝐙∥
2

+ ∥ ̂𝛽𝑂𝐿𝑆𝐙 − 𝑏𝐙∥
2

= ∥𝜽 − ̂𝛽𝑂𝐿𝑆𝐙∥
2

+ ( ̂𝛽𝑂𝐿𝑆 − 𝑏)2 ‖𝐙‖2 .
Above we used the following two facts:
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1. In the hypothetical oracle linear regression of 𝜃𝑖 ∼ 𝑍𝑖, the residuals are orthogonal to
the subspace generated by 𝐙.

2. 𝑏𝐙 lies in the linear span of 𝐙.

Taking expectations we thus find that:

𝔼𝜽 [‖𝜽 − 𝑏𝐙‖2] = 𝔼𝜽 [∥𝜽 − ̂𝛽𝑂𝐿𝑆𝐙∥
2
] + 𝔼𝜽 [( ̂𝛽𝑂𝐿𝑆 − 𝑏)2 ‖𝐙‖2] ,

and note that first summand on the RHS does not depend on 𝑏. Thus, to show that James-Stein
dominates the MLE, it suffices to show that:

𝔼𝜽 [( ̂𝛽𝑂𝐿𝑆 − 𝑏𝐽𝑆)2 ‖𝐙‖2] < 𝔼𝜽 [( ̂𝛽𝑂𝐿𝑆 − 1)2 ‖𝐙‖2] .
The above is equivalent to showing that:

𝔼𝜽 [(1 − 𝑏𝐽𝑆)(2 ̂𝛽𝑂𝐿𝑆 − 1 − 𝑏𝐽𝑆) ‖𝐙‖2] < 0.

In turn note that 1 − 𝑏𝐽𝑆 = (𝑛 − 2)/ ‖𝐙‖2, so that the above is equivalent to:

𝔼𝜽 [2 ̂𝛽𝑂𝐿𝑆 − 1 − 𝑏𝐽𝑆] ≤ 0.
Plugging in the definitions and rearranging, we finally can see that it suffices to prove the
following:

𝔼𝜽 [2 ∑𝑛
𝑖=1 𝜃𝑖𝑍𝑖 + (𝑛 − 2)

‖𝐙‖2 ] < 2.

We will show this through Stein’s identity. Let ℎ𝑖(𝐙) = 𝑍𝑖
‖𝐙‖2 , so that:

𝜕ℎ𝑖(𝐙)
𝜕𝑍𝑖

= 1
‖𝐙‖2 − 2𝑍2

𝑖
‖𝐙‖4 .

Stein’s identity yields:
𝔼𝜽 [(𝑍𝑖 − 𝜃𝑖)ℎ𝑖(𝐙)] = 𝔼𝜽 [𝜕ℎ𝑖(𝐙)

𝜕𝑍𝑖
] ,

which means that:

𝔼𝜽 [ 𝑍2
𝑖

‖𝐙‖2 − 𝜃𝑖𝑍𝑖
‖𝐙‖2 ] = 𝔼𝜽 [ 1

‖𝐙‖2 − 2𝑍2
𝑖

‖𝐙‖4 ] .

Summing over 𝑖 = 1, … , 𝑛:

1 − 𝔼𝜽 [∑𝑛
𝑖=1 𝜃𝑖𝑍𝑖

‖𝐙‖2 ] = 𝔼𝜽 [(𝑛 − 2)
‖𝐙‖2 ] .

Hence:

𝔼𝜽 [2 ∑𝑛
𝑖=1 𝜃𝑖𝑍𝑖 + (𝑛 − 2)

‖𝐙‖2 ] < 2𝔼𝜽 [∑𝑛
𝑖=1 𝜃𝑖𝑍𝑖 + (𝑛 − 2)

‖𝐙‖2 ] = 2.
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4.3 James-Stein shrinkage with side-information

So far in this chapter we have posited that 𝑍𝑖 ∼ 𝒩(𝜃𝑖, 1). Suppose that for the 𝑖-th unit we do
not only observe 𝑍𝑖, but also side-information 𝑋𝑖 ∈ 𝒳. In the compound setting we think of
𝑋𝑖 as being fixed (not random), and in the (empirical) Bayes setting we think of 𝑋𝑖 as being
independent of 𝑍𝑖 conditionally on 𝜃𝑖.

Figure 4.2: Two hypothetical DAGs representing empirical Bayes with side-information

Crucially above both 𝑍𝑖 and 𝑋𝑖 can contain information about 𝜃𝑖. While we understand
the distribution 𝑍𝑖 ∣ 𝜃𝑖 we will seek methods that work without explicit requirements on the
relationship of 𝜃𝑖 and 𝑋𝑖. We mention two possible baselines:

1. Pure empirical Bayes: We ignore the information in 𝑋𝑖 and apply our favorite em-
pirical Bayes method based on 𝑍1, … , 𝑍𝑛 so as to match the performance of 𝔼 [𝜃𝑖 ∣ 𝑍𝑖].

2. Pure predictive modeling: We seek the best prediction based on only covariates.
This is given by 𝑚(𝑋𝑖) = 𝔼 [𝜃𝑖 ∣ 𝑋𝑖]. Note that we can estimate this based on data:
𝔼 [𝑍𝑖 ∣ 𝑋𝑖] = 𝔼 [𝜃𝑖 ∣ 𝑋𝑖] and so we could regress 𝑍𝑖 ∼ 𝑋𝑖 using our favorite supervised
learning method to learn 𝑚(⋅).

Both of the above approaches however leave information on the table. Below we will study
methods that can extract information from both 𝑍𝑖 and 𝑋𝑖, but before doing so, we will
consider two applications.

4.3.1 Examples of applications for shrinkage with side-information

Census bureau in the 1970s: The Census Bureau at the time was interested in estimating
the per-capita income 𝜃𝑖 in 39,000 units of local government (“small areas”) based on surveys
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of 20% of the population. Let us denote the sample average income in the 𝑖-th area by 𝑍𝑖.
Then, for the 1970 census, the Census Bureau proceeded as follows: for any area 𝑖 with a
population with 500 people or more, it reported 𝑍𝑖 as the estimate of 𝜃𝑖, while for any small
area with population below 500 people, it reported the average income of the county to which
the area belonged. The motivation was based on a bias-variance tradeoff consideration: with
less than 500 people, 𝑍𝑖 would be extremely noisy, so the Bureau preferred a biased but less
noisy estimate.

Fay III and Herriot (1979) realized the potential here for James-Stein to outperform the above
heuristic approach. Empirical Bayes could provide a principled way for combining both sources
of information 𝑍𝑖 and data for the county. Their principled approach did not require setting
e.g., an arbitrary cutoff at a population of 500. In seeking to solve the above problem, Fay
III and Herriot (1979) developed an approach to James-Stein shrinkage with side-information:
they modeled 𝑍𝑖 ∼ 𝒩(𝜃𝑖, 1) and also sought to include side-information 𝑋𝑖 that included the
per-capita income of the whole county, IRS data, and housing data.

In fact, their method was implemented as part of the 1974 census; Fay III and Herriot (1979)
write the following:

“Because of the mathematical and logical consistency of the revised procedures,
and on the basis of independent empirical evidence, the Census Bureau has used
this methodology in forming the estimates for 1974 and subsequent years. To
our knowledge, the Census Bureau’s use is the largest application of James-Stein
procedures in a federal statistical program.” Fay III and Herriot (1979)

Estimating average movie ratings: Ignatiadis and Wager (2019) use the following setting
as an application of empirical Bayes shrinkage with side-information: consider a dataset of
movie reviews, e.g., MovieLens (Harper and Konstan 2016), where each movie (𝑖 = 1, … , 𝑛)
has a given average rating (𝑍𝑖) based on a limited number of viewers. Additionally, we have
access to various information about each movie (𝑋𝑖), such as its genre, cast, length, etc. The
objective is to estimate the “true” rating (𝜇𝑖) of each movie, meaning the average rating it
would receive if it was reviewed by a larger number of similar reviewers.

4.3.2 The oracle approach

What is the best we could hope to do in the setting of this section? If we seek to estimate 𝜃𝑖
in mean squared error, the best we can do is of course to use the Bayes predictor:

𝔼 [𝜃𝑖 ∣ 𝑋𝑖, 𝑍𝑖] . (4.6)

We note in passing that the above object is nonparametrically identified. On the other hand, it
is not a standard object, for example, we do not observe 𝜃𝑖 so we could not just apply supervised
learning of 𝜃𝑖 ∼ 𝑋𝑖, 𝑍𝑖. Furthermore, we have distributional information about 𝑍𝑖 ∣ 𝜃𝑖 but
do not have more information on 𝑋𝑖. Most fully nonparametric estimation strategies for this
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problem would be fickle, suffer from the curse of dimensionality if 𝑋𝑖 is high-dimensional or
structured, and would rely substantially on any assumptions made e.g., about Gaussianity of
𝑍𝑖 ∣ 𝜃𝑖.

Instead we consider an alternative.

4.3.3 A practical model: side-information that modulates the prior mean

One challenge in estimating Eq. 4.6 is that so far, we essentially allow the prior 𝐺(𝜃 ∣ 𝑋𝑖) to
be modulated by 𝑋𝑖 in an arbitrary way. The task simplifies substantially if 𝑋𝑖 modulates the
prior 𝐺(𝜃 ∣ 𝑋𝑖) only through the mean function 𝑚(𝑥) = 𝔼 [𝜃 ∣ 𝑋 = 𝑥] = 𝔼 [𝑍 ∣ 𝑋 = 𝑥]. To be
concrete we consider the following working model that generalizes the empirical Bayes model
of Efron and Morris:

𝑋𝑖
iid∼ ℙ𝑋,

𝜃𝑖 ∣ 𝑋𝑖
iid∼ 𝒩(𝑚(𝑋𝑖), 𝐴),

𝑍𝑖 ∣ 𝜃𝑖, 𝑋𝑖
iid∼ 𝒩(𝜃𝑖, 1).

(4.7)

Under Eq. 4.7, the Bayes predictor Eq. 4.6 simplifies as follows:

𝔼 [𝜃𝑖 ∣ 𝑋𝑖 = 𝑥, 𝑍𝑖 = 𝑧] = 1
1 + 𝐴𝑚(𝑥) + 𝐴

1 + 𝐴𝑧. (4.8)

The equation above has the following elegant interpretation: we take a convex combination of
the two sources of information, 𝑍𝑖 and 𝑋𝑖, wherein we use 𝑋𝑖 through the optimal regression
𝑚(𝑋𝑖) = 𝔼 [𝜃𝑖 ∣ 𝑋𝑖]. Eq. 4.8 also suggests the following procedure:

1. Regress 𝑍𝑖 ∼ 𝑋𝑖 using our favorite supervised learning method to learn 𝑚̂(⋅).
2. Learn 𝐴.

3. Estimate 𝜃𝑖 by 1
1+𝐴𝑚̂(𝑋𝑖) + 𝐴

1+𝐴𝑍𝑖.

4.3.4 Shrinking towards linear regression

Suppose that 𝑋𝑖 ∈ ℝ𝑝. We stack the 𝑋⊺
𝑖 into an 𝑛 × 𝑝 design matrix 𝐗.

Suppose that we posit that 𝑚(𝑥) in Eq. 4.7 is a linear function of 𝑥, that is, 𝑚(𝑥) = 𝛽⊺𝑥. This
is the setting considered by Fay III and Herriot (1979).5 Here’s how one can proceed:

5They do not proceed as we do below; instead they estimated 𝛽 and 𝐴 by the method of moments
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Let ̂𝛽 be the ordinary least squares coefficients of the regression 𝑍𝑖 ∼ 𝑋𝑖. Then we could
shrink towards the OLS (ordinary least squares) predictions 𝑋⊺

𝑖 ̂𝛽. This gives rise to the
James-Stein-Fay-Herriot estimator:

̂𝜽𝐽𝑆−𝐹𝐻 = 𝐗 ̂𝛽 + ⎛⎜
⎝

1 − 𝑛 − 𝑝 − 2
∥𝐙 − 𝐗 ̂𝛽∥

2
⎞⎟
⎠

(𝐙 − 𝐗 ̂𝛽).

We have that:

Theorem 4.2. The James-Stein-Fay-Herriot estimator dominates the MLE (for any value of
𝐗) as soon as 𝑛 ≥ 𝑝 + 3, i.e.,:

𝔼𝜽 [∥ ̂𝜽𝐽𝑆−𝐹𝐻 − 𝜽∥
2
] < 𝑛.

The expectations above hold when we treat 𝐗 as fixed rather than random and 𝑍𝑖 ∣ 𝜃𝑖, 𝑋𝑖 ∼
𝒩(𝜃𝑖, 1).

The following proof is suggested in passing by Jiang and Zhang (2010); in a slightly different
context the argument also appears in Brown and Zhao (2009).

Proof. The idea is the following. Let 𝑄𝐴 be the 𝑛 × 𝑝 matrix generated by orthonormalizing
the design matrix 𝐗. Furthermore let 𝑄𝐵 be the 𝑛 × 𝑛 − 𝑝 matrix generated by completing
the column space of 𝑄𝐴 to all of ℝ𝑛 so that 𝑄 = [𝑄𝐴𝑄𝐵] is itself orthonormal.6

Now let us call 𝐙̃ = 𝑄⊺
𝐵𝐙 ∈ ℝ𝑛−𝑝. Then:

𝐙̃ ∼ 𝒩(𝑄⊺
𝐵𝜽, 𝐼𝑛−𝑝).

The crucial argument is as simple as follows. We apply James-Stein to 𝐙̃! It takes the form:

̃𝜽𝐽𝑆 = ⎛⎜
⎝

1 − 𝑛 − 𝑝 − 2
∥𝐙̃∥

2
⎞⎟
⎠

𝐙̃.

The dimension of the problem here is 𝑛 − 𝑝 and we have that 𝑛 − 𝑝 ≥ 3 by assumption. Thus:

𝔼𝜽 [∥ ̃𝜽𝐽𝑆 − 𝑄⊺
𝐵𝜽∥] < 𝑛 − 𝑝.

Also let us note the following. Since 𝐗 ̂𝛽 is the projection of 𝐙 to the column space of 𝑄𝐴, we
get:

∥𝐙 − 𝐗 ̂𝛽∥
2

= ∥𝑄⊺
𝐴𝐙 − 𝑄⊺

𝐴𝐗 ̂𝛽∥
2

⏟⏟⏟⏟⏟⏟⏟
=0

+ ∥𝑄⊺
𝐵𝐙 − 𝑄⊺

𝐵𝐗 ̂𝛽∥
2

⏟⏟⏟⏟⏟⏟⏟
=∥𝑄⊺

𝐵𝐙∥2

= ∥𝐙̃∥
2

.

6In numerical linear algebra terms: we are taking the QR decomposition of 𝐗.
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The above shows that:
̃𝜽𝐽𝑆 = 𝑄⊺

𝐵 (1 − 𝑛 − 𝑝 − 2
∥𝐙 − 𝐗 ̂𝛽∥

) 𝐙.

We are almost ready to conclude:

𝔼𝜽 [∥ ̂𝜽𝐽𝑆−𝐹𝐻 − 𝜽∥
2
]

= 𝔼𝜽 [∥𝑄⊺ ̂𝜽𝐽𝑆−𝐹𝐻 − 𝑄⊺𝜽∥
2
]

= 𝔼𝜽 [∥𝑄⊺
𝐴 ̂𝜽𝐽𝑆−𝐹𝐻 − 𝑄⊺

𝐴𝜽∥
2
] + 𝔼𝜽 [∥𝑄⊺

𝐵 ̂𝜽𝐽𝑆−𝐹𝐻 − 𝑄⊺
𝐵𝜽∥

2
]

= 𝔼𝜽 [∥𝑄⊺
𝐴𝐙 − 𝑄⊺

𝐴𝜽∥2]⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑝

+ 𝔼𝜽 [∥ ̃𝜽𝐽𝑆 − 𝑄⊺
𝐵𝜽∥

2
]⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑝

< 𝑛.

4.3.5 Shrinking towards an arbitrary machine learning model

The estimator and theoretical result of Theorem 4.2 is elegant. However, it relies substantially
on the fact that we take 𝑚(𝑥) to be a linear function of a low-dimensional 𝑥. What if we fit
𝑚̂(⋅) through boosting or through a neural network and e.g., 𝒳 consists e.g., of images? Is it
possible to come up with a procedure that dominates 𝑍𝑖 (in the sense of James-Stein) when
we shrink toward an arbitrary machine learning model (that we may not be able to handle
theoretically)?

The starting point of the idea of Ignatiadis and Wager (2019) is the following: suppose we
are given a fixed regression function 𝑚̃(⋅) that may be misspecified, that is, 𝑚̃(⋅) ≠ 𝑚(⋅) and
we seek to linearly combine 𝑚̃(𝑋𝑖) with 𝑍𝑖 to estimate 𝜃𝑖. How should we proceed? In other
words, consider the following class of estimators:

ℒ(𝑚̃) ∶= { ̂𝜽(𝜆) = ( ̂𝜃1(𝜆), … , ̂𝜃𝑛(𝜆)), ̂𝜃𝑖(𝜆) ∶= (1 − 𝜆)𝑚̃(𝑋𝑖) + 𝜆𝑍𝑖 ∶ 𝜆 ∈ [0, 1]} . (4.9)

Notice that under Eq. 4.7 and if 𝑚̃(⋅) = 𝑚(⋅), then the choice:

𝜆∗(𝐴, 𝑚) = 𝐴
𝐴 + 1,

in fact leads to the Bayes decision Eq. 4.8 and so this choice of 𝜆 must also give the optimal
estimator within the class ℒ(𝑚); Eq. 4.9. But what if 𝑚̃(⋅) ≠ 𝑚(⋅)?
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Proposition 4.3. Suppose the triples (𝜃𝑖, 𝑋𝑖, 𝑍𝑖) are generated according to Eq. 4.7 (and take
all expectations that follow with respect to the randomness in the triple.) Then the following
optimization problem over estimators ̂𝜽(𝜆) ∈ ℒ(𝑚̃) Eq. 4.9,

min
𝜆∈[0,1]

{𝔼 [∥ ̂𝜽(𝜆) − 𝜽∥
2
]} ,

is solved by:

𝜆∗(𝐴, 𝑚̃) = 𝐴 + 𝔼 [(𝑚(𝑋) − 𝑚̃(𝑋))2]
𝐴 + 𝔼 [(𝑚(𝑋) − 𝑚̃(𝑋))2] + 1 = 𝜆∗(𝐴 + 𝔼 [(𝑚(𝑋) − 𝑚̃(𝑋))2] , 𝑚).

Proof. Similar to the proof of Proposition 4.1, so omitted.

This result says the following: even if knew 𝐴 in model Eq. 4.7, if 𝑚̃(⋅) ≠ 𝑚(⋅) then we should
still prefer to use a different choice of “𝐴” and not the true 𝐴: we should inflate the true
prior variance to also account for the out-of-sample mean squared error 𝔼 [(𝑚(𝑋) − 𝑚̃(𝑋))2]!
Furthermore, there is one more upshot:

𝐴 + 𝔼 [(𝑚(𝑋) − 𝑚̃(𝑋))2] = 𝔼 [(𝑍 − 𝑚̃(𝑋))2] − 1.

The LHS is what we need to know to emulate the optimal rule in ℒ(𝑚̃). Furthermore, we
may directly estimate the RHS, since it is the out-of-sample prediction error for 𝑍 based on
𝑚̃, which we can assess e.g., using cross-validation or a test sample.

This leads to the following algorithm (presented with 2 folds for simplicity but generalizes to
𝐾 folds), which is called “empirical Bayes with cross-fitting” (ECDF):

1. Form a partition of {1, … , 𝑛} into two folds 𝐼1 and 𝐼2.
2. Use observations in 𝐼1, to estimate the regression 𝑚(𝑥) = 𝔼 [𝑍𝑖 ∣ 𝑋𝑖 = 𝑥] by 𝑚̂𝐼1

(⋅) (using
any machine learning model).

3. Using observations in 𝐼2, compute:

𝐴𝐼2
= 1

|𝐼2| − 2 ∑
𝑖∈𝐼2

(𝑚̂𝐼1
(𝑋𝑖) − 𝑍𝑖)

2 − 1.

4. For all 𝑖 ∈ 𝐼2, estimate 𝜃𝑖 by:

̂𝜃𝐸𝐵𝐶𝐹
𝑖 = 1

𝐴𝐼2
+ 1

𝑚̂𝐼1
(𝑋𝑖) +

𝐴𝐼2

𝐴𝐼2
+ 1

𝑍𝑖.

5. Repeat with folds 𝐼1 and 𝐼2 flipped to also get estimates of ̂𝜃𝐸𝐵𝐶𝐹
𝑖 for 𝑖 ∈ 𝐼1.
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Ignatiadis and Wager (2019) show that the above procedure satisfies the James-Stein prop-
erty.

Theorem 4.3. Suppose that conditionally on (𝑋𝑖, 𝜃𝑖)𝑖, the 𝑍𝑖 are jointly independent and are
distributed as 𝒩(𝜃𝑖, 1). Suppose further that |𝐼1| ≥ 3 and |𝐼2| ≥, then:

𝔼𝜽,𝐗 [∥ ̂𝜽𝐸𝐵𝐶𝐹 − 𝜽∥
2
] < 𝑛.

Proof. The idea is the following. It suffices to prove that:

∑
𝑖∈𝐼𝑗

𝔼𝜽,𝐗 [( ̂𝜽𝐸𝐵𝐶𝐹
𝑖 − 𝜃𝑖)

2
] < ∣𝐼𝑗∣ , 𝑗 = 1, 2. (4.10)

This follows directly from our existing results! For example, take the second fold 𝐼2. Then
( ̂𝜃𝐸𝐵𝐶𝐹

𝑖 )𝑖∈𝐼2
is equal to the following estimator: we apply James-Stein to (𝑍𝑖)𝑖∈𝐼2

but shrink
toward the location vector (𝑚̂𝐼1

(𝑋𝑖))𝑖∈𝐼2
. The latter depends on (𝑋𝑖)1≤𝑖≤𝑛 and (𝑍𝑖)𝑖∈𝐼2

, hence
if we condition on all the 𝑋𝑖 as well as the 𝑍𝑖 in 𝐼1, then we may treat 𝑚̂𝐼1

(𝑋𝑖))𝑖∈𝐼2
as a fixed

location vector. Hence, since |𝐼2| ≥ 3, Eq. 4.10 for 𝑗 = 2 follows from the results in Section 3.4.1,
Chapter 3.

4.4 Shrinkage in the heteroscedastic problem

Throughout these notes—even when we set forth the definition of parallel statistical decision
procedures in Definition 1.2 (Chapter 1)—we have assumed that the likelihood, 𝑝(⋅ ∣ 𝜃𝑖) remains
the same for all simple statistical problems under consideration. For example, in the Gaussian
problem we have assumed that 𝑍𝑖 ∣ 𝜃𝑖 ∼ 𝒩(𝜃𝑖, 1). In many applications, it is more reasonable
to suppose instead that:

𝑍𝑖 ∣ 𝜃𝑖 ∼ 𝒩(𝜃𝑖, 𝜎2
𝑖 ), (4.11)

where 𝜎2
𝑖 varies with 𝑖.7 As one example, in the Baseball example of Efron and Morris, we

only sought to predict the batting average of players with 45 at bats. If we want to make
predictions for all players, then they will have different at bats, and so, the precision of our
initial measurement for each player will vary.

In general, there are a few more subtleties involved in the heteroscedastic problem. For exam-
ple, suppose one is interested in compound estimation of 𝜽 = (𝜃1, … , 𝜃𝑛). What compound
loss function should one use? One could use e.g., squared error as before,

ℓ( ̂𝜽, 𝜽) = 1
𝑛

𝑛
∑
𝑖=1

( ̂𝜃𝑖 − 𝜃𝑖)2, (4.12)

7Or more generally, to suppose that 𝑍𝑖 ∣ 𝜃𝑖 ∼ 𝑝𝑖(⋅ ∣ 𝜃𝑖).
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or one could also weight each error by the corresponding precisions, that is:

ℓ( ̂𝜽, 𝜽) = 1
𝑛

𝑛
∑
𝑖=1

1
𝜎2

𝑖
( ̂𝜃𝑖 − 𝜃𝑖)2. (4.13)

The latter loss represents the desire to downweight errors for units 𝑖 that were observed with
a lot of noise.

4.4.1 Precision-weighted squared error loss

The loss in Eq. 4.13 turns out to be easier to handle! Let ̃𝑍𝑖 = 𝑍𝑖/𝜎𝑖 and ̃𝜃𝑖 = 𝜃𝑖/𝜎𝑖. Then:

̃𝑍𝑖 ∣ ̃𝜃𝑖 ∼ 𝒩( ̃𝜃𝑖, 1),

i.e., we are back to the homoscedastic setting. If we apply e.g., James-Stein on ̃𝑍𝑖 and then
transform back to the original scale (by multiplication by 𝜎𝑖), then we target precisely the loss
in Eq. 4.13.

4.4.2 Squared error loss

Eq. 4.12 is more difficult to handle—and in fact even in the simple Gaussian setting there is no
clear cut answer how to best conduct empirical Bayes shrinkage. One proposal that works well
is due to Xie, Kou, and Brown (2012). They generalize the ideas we set forth in Section 4.1
to the heteroscedastic setting.8

The idea is the following. First suppose that we posit that:

𝜃𝑖 ∼ 𝒩(0, 𝐴), 𝑍𝑖 ∣ 𝜎𝑖 ∼ 𝒩(𝜃𝑖, 1).
Then:

𝔼 [𝜃𝑖 ∣ 𝜎𝑖, 𝑍𝑖] = 𝐴
𝐴 + 𝜎2

𝑖
𝑍𝑖. (4.14)

Xie, Kou, and Brown (2012) use the above equation to define the class of estimators that we
get as we vary 𝐴 in Eq. 4.14. Hence:

ℒ ∶= { ̂𝜽(𝐴) ∶ 𝐴 ≥ 0} , ̂𝜃𝑖(𝐴) ∶= 𝐴
𝐴 + 𝜎2

𝑖
𝑍𝑖. (4.15)

They then choose an estimator from the class ℒ by minimizing SURE. This requires a slight
modification of SURE that we learned in last class to Gaussian noise with variance 𝜎2 that is
not necessarily equal to 1.

8In fact the causality is backwards: our treatment in these lecture notes for the homoscedastic case was inspired
by Xie, Kou, and Brown (2012) (as well as Kou and Yang (2017)).
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Definition 4.1 (Stein’s unbiased risk estimator (heteroscedastic case)). Suppose that ̂𝜽 ≡
ℎ(𝐙) = ( ̂𝜃1, … , ̂𝜃𝑛) is an almost differentiable function of 𝐙. Further suppose that 𝑍𝑖 are
independent and 𝑍𝑖 ∼ 𝒩(𝜃𝑖, 𝜎2

𝑖 ). Then:

𝑅̂ ∶=
𝑛

∑
𝑖=1

(−𝜎2
𝑖 + (𝑍𝑖 − ̂𝜃𝑖)2 + 2𝜎2

𝑖
𝜕 ̂𝜃𝑖
𝜕𝑧𝑖

(𝐙)) , (4.16)

is unbiased for the mean squared error in estimating 𝜃𝑖, that is,

𝔼𝜽[𝑅̂] = 𝔼𝜽 [∥𝜽 − ̂𝜽∥
2
] . (4.17)

Xie, Kou, and Brown (2012) apply the above to choose an estimator from the class Eq. 4.15.
Concretely, they let:

𝐴 ∈ argmin
𝐴≥0

{
𝑛

∑
𝑖=1

(𝜎2
𝑖 + 𝜎4

𝑖
(𝐴 + 𝜎2

𝑖 )2 𝑍2
𝑖 − 2 𝜎4

𝑖
𝐴 + 𝜎2

𝑖
)} ,

and then estimate 𝜽 by ̂𝜽(𝐴).
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5 Empirical Bayes intervals and confidence
sets

In this chapter we explain how to quantify uncertainty in empirical Bayes settings by reporting
“empirical Bayes confidence intervals.” This is a task that has received less attention compared
to empirical Bayes for e.g., shrinkage estimation.

5.1 Preliminaries

5.1.1 Intervals for simple statistical decision problems

To introduce definitions, we start by studying a generic simple statistical decision problem
(e.g., as set forth in Definition 1.1 in Chapter 1). We have a parameter 𝜃 ∈ Θ ⊂ ℝ and observe
a single 𝑍 ∣ 𝜃 ∼ 𝑝(⋅ ∣ 𝜃). Our decision space 𝒯 consists of outputting an interval ℐ ∶= ℐ(𝑍) or
a set 𝒮.1

Let us also suppose that 𝜃 ∼ 𝐺. A notion of coverage is given as follows:

Definition 5.1 (Marginal coverage interval). An interval ℐ ∶= ℐ(𝑍) is said to have marginal
coverage for the parameter 𝜃 when:

ℙ𝐺 [𝜃 ∈ ℐ(𝑍)] ≥ 1 − 𝛼. (5.1)

It is important to note that randomness in Eq. 5.1 is with respect to both the randomness in
𝜃 and in 𝑍 ∣ 𝜃.

Below we provide two examples of intervals satisfying Eq. 5.1.

Definition 5.2 (Frequentist confidence interval). An interval ℐ is called a frequentist (1 − 𝛼)-
confidence interval for 𝜃 if:

ℙ𝜃 [𝜃 ∈ ℐ] ≥ 1 − 𝛼 for all 𝜃 ∈ Θ.

1We will typically present results for ℐ but most definitions and concepts translated directly to more general
sets 𝒮.
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Proposition 5.1. A frequentist confidence interval is also an interval with marginal coverage
as in Eq. 5.1.

Proof. Let ℐ be a frequentist (1 − 𝛼)-confidence interval. Then:

ℙ𝐺 [𝜃 ∈ ℐ] = 𝔼𝐺 [ℙ𝐺 [𝜃 ∈ ℐ ∣ 𝜃]] = 𝔼𝐺[ ℙ𝜃 [𝜃 ∈ ℐ]⏟⏟⏟⏟⏟
≥1−𝛼

] ≥ 1 − 𝛼.

Example 5.1 (Confidence interval for a Gaussian mean). Suppose that 𝑍 ∼ 𝒩(𝜃, 1). Then
the “textbook” 1 − 𝛼 confidence interval for 𝜃 is given by:

ℐ(𝑧) = 𝑧 ± 𝑞1−𝛼/2,
where 𝑞1−𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal distribution.

Definition 5.3 (Credible interval). An interval ℐ is called an (1 − 𝛼)-credible interval for 𝜃 if:

ℙ𝐺 [𝜃 ∈ ℐ ∣ 𝑍] ≥ 1 − 𝛼 almost surely.

Proposition 5.2. A credible interval is also an interval with marginal coverage as in Eq. 5.1.

Proof. Let ℐ be an (1 − 𝛼)-credible interval. Then:

ℙ𝐺 [𝜃 ∈ ℐ] = 𝔼𝐺[ ℙ𝐺 [𝜃 ∈ ℐ ∣ 𝑍]⏟⏟⏟⏟⏟⏟⏟
≥1−𝛼 a.s.

] ≥ 1 − 𝛼.

Example 5.2 (Credible interval for a Gaussian mean). Suppose that 𝑍 ∼ 𝒩(𝜃, 1) and further
suppose that 𝜃 ∼ 𝒩(0, 𝐴). Then recall that

𝜃 ∣ 𝑍 ∼ 𝒩 ( 𝐴
𝐴 + 1𝑍, 𝐴

𝐴 + 1) ,

and so a credible intervals may be constructed by forming the interval whose left, (resp. right)
end-point is the 𝛼/2 (resp. 1 − 𝛼/2) quantile of the posterior distribution, i.e.,

ℐ(𝑧) = 𝐴
𝐴 + 1𝑧 ± √ 𝐴

𝐴 + 1 ⋅ 𝑞1−𝛼/2,

where 𝑞1−𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal distribution.
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Figure 5.1: Confidence interval and credible interval for 𝜃 when 𝑍 ∼ 𝒩(𝜃, 1) and 𝜃 ∼
𝒩(0, 0.25).

We illustrate the ideas above with a simple example. We consider the Gaussian setting con-
sidered in the above examples and take the prior 𝐺 = 𝒩(0, 0.25).
Both types of intervals satisfy ℙ𝐺 [𝜃 ∈ ℐ(𝑍)] = 1 − 𝛼. However, their frequentist coverage
ℙ𝜃 [𝜃 ∈ ℐ(𝑍)] and ℙ𝐺 [𝜃 ∈ ℐ(𝑍) ∣ 𝑍] can be substantially different as a function of 𝜃, resp.
𝑍.

Which of these two cases are we happier with? It depends!

“This suggests caution when using empirical Bayes posterior intervals: While these
intervals approximately maintain a target frequentist coverage rate on average
across groups, the coverage can be quite poor for outlying groups, which in the
examples considered include students with low test-taking ability, or counties with
high levels of household radon, which are likely the groups of highest concern.”
Hoff (2022)

“Applying our method, we find considerable overestimation of the effect and under-
coverage of the confidence interval when the 𝑧-value exceeds 1.5. These are serious
issues which are undoubtedly a part of the explanation for the phenomenon of poor
replication.” Zwet, Schwab, and Senn (2021)

73



−4 −2 0 2 4
0.00

0.25

0.50

0.75

1.00

θ

P
θ
[θ

∈
I]

Confidence Interval
Credible Interval

Figure 5.2: Frequentist coverage of confidence and credible intervals as a function of 𝜃.
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Figure 5.3: Coverage conditionally on 𝑍 of confidence and credible intervals.
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5.1.2 Optimal Bayesian intervals for simple statistical decisions

In analogy to our discussion Chapter 1, we may seek to construct confidence intervals with
some notion of optimality depending on our choice of loss function. Throughout we assume
that 𝜃 ∼ 𝐺 and we take the loss of the interval to be the interval length:

ℓ(ℐ, 𝜃) = |ℐ| .

We seek to construct ℐ such that 𝔼𝐺 [|ℐ|] is minimal. We also need to put an additional
constraint on ℐ.
Optimality among credible interval: One option would be to require that ℐ is a credible
interval as in Definition 5.3. In that case we could seek to find the interval ℐ such that:

ℐ∗(⋅) ∈ argmin
ℐ(⋅)

𝔼𝐺 [|ℐ(𝑍)|]

s.t. ℙ𝐺 [𝜃 ∈ ℐ(𝑍) ∣ 𝑍 = 𝑧] ≥ 1 − 𝛼 for all 𝑧 ∈ 𝒵.
(5.2)

Note that by an argument analogous to that of Proposition 1.2 in Chapter 1, the above interval
can be computed pointwise for each 𝑧 by finding ℐ(𝑧) with the following properties:

ℐ(𝑧) ∈ argmin
ℐ interval

{𝔼𝐺 [|ℐ| ∣ 𝑍 = 𝑧] ∶ ℙ𝐺 [𝜃 ∈ ℐ ∣ 𝑍 = 𝑧] ≥ 1 − 𝛼} .

Exercise 5.1 (Optimality of Gaussian-Gaussian credible interval). Prove that the credible
interval in Example 5.2 is optimal in the sense of Eq. 5.2.

Optimality among marginal coverage intervals: Next we may instead only constrain ℐ
to have marginal coverage as in Eq. 5.1. By Proposition 5.2, this constraint is less restrictive
than requiring ℐ to be a credible interval and so this assumption could in principle lead to
smaller optimal expected interval length.

ℐ∗(⋅) ∈ argmin
ℐ(⋅)

𝔼𝐺 [|ℐ(𝑍)|]

s.t. ℙ𝐺 [𝜃 ∈ ℐ(𝑍)] ≥ 1 − 𝛼.
(5.3)

Proposition 5.3. Fix 𝜆 > 0. Suppose that for any 𝑧 ∈ 𝒵, ℐ(𝑧) solves the following optimiza-
tion problem:

ℐ(𝑧) ∈ argmin
ℐ interval

{|ℐ| − 𝜆ℙ𝐺 [𝜃 ∈ ℐ ∣ 𝑍 = 𝑧]} . (5.4)

Then, ℐ(⋅) is the optimal marginal coverage interval in the sense Eq. 5.3 for,

1 − 𝛼 = ℙ𝐺 [𝜃 ∈ ℐ(𝑍)] .
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Proof. First, by iterated expectation we have by Eq. 5.4 that ℐ(⋅) solves the following opti-
mization problem:

ℐ(⋅) ∈ argmin
ℐ(⋅)

{𝔼𝐺 [|ℐ|] − 𝜆ℙ𝐺 [𝜃 ∈ ℐ]} .

But the objective is merely the Lagrangian of the constrained objective Eq. 5.3.

Example 5.3 (Optimal Gaussian-Gaussian marginal coverage interval). Consider the credible
interval described in Example 5.2. In the setting of the same example, this interval in fact is
also the optimal marginal coverage interval in the sense of Eq. 5.3.

Proof. Let us fix 𝜆 > 0 and let us solve Eq. 5.4 for any fixed value of 𝑧. It will be convenient
to parameterize the interval ℐ as (𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] + 𝑐) ± 𝜒 for some 𝑐 ∈ ℝ, 𝜒 ≥ 0. Then we seek
to minimize over 𝑐, 𝜒 the objective:

Ψ(𝑐, 𝜒) ∶= 2𝜒 − 𝜆ℙ𝐺 [|𝜃 − 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] − 𝑐| ≤ 𝜒 ∣ 𝑍 = 𝑧] .
In fact, let us attempt to first optimize over 𝑐 (for fixed 𝜒). That is, we seek to maximize, the
following:

ℙ𝐺 [|𝜃 − 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] − 𝑐| ≤ 𝜒 ∣ 𝑍 = 𝑧] = ℙ𝐺 [−𝜒 + 𝑐 ≤ 𝜃 − 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] ≤ 𝜒 + 𝑐 ∣ 𝑍 = 𝑧]
= Φ𝐴/(𝐴+1)(𝜒 − 𝑐) − Φ𝐴/(𝐴+1)(−𝜒 − 𝑐),

where we write Φ𝑢 for the CDF of a Gaussian with variance 𝑢 and 𝜑𝑢 for the pdf. By taking
derivatives, we immediately find that the above is optimized for 𝑐 = 0. Hence it remains to
find 𝜒 that minimizes:

2𝜒 − 𝜆 (Φ𝐴/(𝐴+1)(𝜒) − Φ𝐴/(𝐴+1)(−𝜒)) ,
and so it suffices to minimize:

2𝜒 − 𝜆 ⋅ 2Φ𝐴/(𝐴+1)(𝜒).
By first order optimality, the optimal 𝜒 is either equal to 0, or satisfies:

2 = 2𝜆𝜑𝐴/(𝐴+1)(𝜒).

Hence let us take
𝜆 = 1/𝜑𝐴/(𝐴+1)(√𝐴/(𝐴 + 1)𝑞1−𝛼/2),

then the optimal 𝜒 = √𝐴/(𝐴 + 1)𝑞1−𝛼/2 and so:

ℐ(𝑧) = 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] ± √ 𝐴
𝐴 + 1𝑞1−𝛼/2.

By Proposition Proposition 5.3, this interval is the optimal 1−ℙ𝐺 [𝜃 ∈ ℐ(𝑍)] marginal coverage
interval. However, note that, 1 − ℙ𝐺 [𝜃 ∈ ℐ(𝑍)] = 1 − 𝛼 and so we conclude.
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5.1.3 Intervals with parallel simple decision problems

Now let us turn to the setting of parallel simple decisions, that is, for 𝑖 = 1, … , 𝑛, we observe
𝑍𝑖 ∣ 𝜃𝑖 ∼ 𝑝(⋅ ∣ 𝜃𝑖).

Definition 5.4. An empirical Bayes interval is defined as any interval-valued mapping

ℐ ∶= ℐ(𝑍1, … , 𝑍𝑛) ≡ ℐ(𝐙).

Intervals as in Definition 5.4 are formed for three main purposes.

Empirical Bayes intervals for individual latent parameters: First, one may be inter-
ested in covering the (latent) parameter 𝜃𝑖. If that is the case, we write ℐ𝑖 for the interval; the
subscript 𝑖 explicitly denotes that our objective is to construct ℐ𝑖 such that 𝜃𝑖 ∈ ℐ𝑖.

What should our notion of coverage be? Below we provide three notions that have appeared
in the literature.

1. Empirical Bayes coverage for parameter 𝜃𝑖: We seek the coverage property

ℙ𝐺 [𝜃𝑖 ∈ ℐ𝑖(𝐙)] ≥ 1 − 𝛼. (5.5)

This definition is similar to Definition 5.1, however, randomness is also taken with respect
to 𝜃𝑗, 𝑍𝑗 for 𝑗 ≠ 𝑖.

2. Compound (average) coverage for parameters 𝜃𝑖: Suppose we form an interval ℐ𝑖
for each parameter 𝜃𝑖. A compound (frequentist) notion of coverage is that of compound–
average coverage:

1
𝑛

𝑛
∑
𝑗=1

ℙ𝜽 [𝜃𝑗 ∈ ℐ𝑗(𝐙)] ≥ 1 − 𝛼. (5.6)

Note that the above statement treats 𝜽 as fixed and is analogous, to e.g., compound
results we have shown for the James-Stein estimator.

3. Frequentist coverage for parameter 𝜃𝑖: Finally, we may require frequentist coverage
of a single parameter 𝜃𝑖, that is, we may require:

ℙ𝜽 [𝜃𝑖 ∈ ℐ𝑖(𝐙)] ≥ 1 − 𝛼. (5.7)

Similar to Eq. 5.6 we treated 𝜽 as fixed, however, instead of requiring coverage on average,
we require coverage for 𝜃𝑖.

Empirical Bayes sets for all latent parameters: One may be interested in constructing
a set 𝒮(𝐙) ∈ Θ𝑛 such that:

ℙ𝐺 [𝜽 ∈ 𝒮(𝐙)] ≥ 1 − 𝛼, or ℙ𝜽 [𝜽 ∈ 𝒮(𝐙)] ≥ 1 − 𝛼.
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Can empirical Bayes help for this task?

Intervals for empirical Bayes estimands and Bayes decisions: A further purpose for
forming empirical Bayes intervals is to cover an empirical Bayes estimand that takes the form
of Bayes optimal decision 𝑡𝐺(𝑧), e.g., 𝑡𝐺(𝑧) = 𝔼𝐺 [𝜃 ∣ 𝑍 = 𝑧] for fixed 𝑧. In this case we may
require coverage of 𝑡𝐺(𝑧):

ℙ𝐺 [𝑡𝐺(𝑧) ∈ ℐ(𝐙)] ≥ 1 − 𝛼.

5.2 Cox’s empirical Bayes confidence intervals for a latent
parameter

For simplicity, let us revisit the Gaussian-Gaussian example wherein: 𝜃𝑖
iid∼ 𝒩(0, 𝐴) for 𝐴 > 0

and 𝑍𝑖 ∣ 𝜃𝑖 ∼ 𝒩(𝜃𝑖, 1).
Cox (1975) proposed the following empirical Bayes confidence intervals for 𝜃𝑖:

ℐ𝐶𝑜𝑥
𝑖 (𝐙) =

̂𝐴
̂𝐴 + 1

𝑍𝑖 ± √ ̂𝐴
̂𝐴 + 1

⋅ 𝑞1−𝛼/2, ̂𝐴 = max{ 1
𝑛

𝑛
∑
𝑖=1

𝑍2
𝑖 − 1, 0} . (5.8)

Theorem 5.1. Under the above model assumptions, i.e., 𝜃𝑖
iid∼ 𝒩(0, 𝐴) for 𝐴 > 0 and 𝑍𝑖 ∣ 𝜃𝑖 ∼

𝒩(𝜃𝑖, 1), it holds for any fixed 𝑖 that:

lim
𝑛→∞

ℙ [𝜃𝑖 ∈ ℐ𝐶𝑜𝑥
𝑖 (𝐙1∶𝑛)] = 1 − 𝛼.

Proof. For simplicity we prove coverage for a slight variant of Eq. 5.8, which is also due to
Cox (1975). We estimate ̂𝐴 in Eq. 5.8 in a leave-one-out-fashion, that is:

ℐ𝐶𝑜𝑥
𝑖 (𝐙) =

̂𝐴−𝑖
̂𝐴−𝑖 + 1

𝑍𝑖 ±
√√
⎷

̂𝐴−𝑖
̂𝐴−𝑖 + 1

⋅ 𝑞1−𝛼/2, ̂𝐴−𝑖 = max{0, 1
𝑛 − 1 ∑

𝑗≠𝑖
𝑍2

𝑗 − 1} . (5.9)

Let us introduce the notation 𝑤 = 𝐴/(𝐴 + 1) and also let 𝑣 ≥ 0 be another fixed number.
Then:

ℙ [𝜃𝑖 ∈ 𝑣𝑍𝑖 ± √𝑣𝑞1−𝛼/2] = ℙ [−√𝑣𝑞1−𝛼/2 ≤ 𝜃𝑖 − 𝑣𝑍𝑖 ≤ √𝑣𝑞1−𝛼/2]

= ℙ [−√ 𝑣
𝑤𝑞1−𝛼/2 + 𝑣 − 𝑤√𝑤 𝑍𝑖 ≤ 𝜃𝑖 − 𝑤𝑍𝑖√𝑤 ≤ √ 𝑣

𝑤𝑞1−𝛼/2 + 𝑣 − 𝑤√𝑤 𝑍𝑖]

= Φ (√ 𝑣
𝑤𝑞1−𝛼/2 + 𝑣 − 𝑤√𝑤 𝑍𝑖) − Φ (√ 𝑣

𝑤𝑞1−𝛼/2 + 𝑣 − 𝑤√𝑤 𝑍𝑖) .
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Hence, returning to our original goal, let us call 𝑤̂−𝑖 = ̂𝐴−𝑖/(1 + ̂𝐴−𝑖).

ℙ [𝜃𝑖 ∈ ℐ𝐶𝑜𝑥
𝑖 (𝐙)] = 𝔼 [ℙ [𝜃𝑖 ∈ ℐ𝐶𝑜𝑥

𝑖 (𝐙) ∣ ̂𝐴−𝑖]]

= 𝔼 [Φ (√𝑤̂−𝑖
𝑤 𝑞1−𝛼/2 + 𝑤̂−𝑖 − 𝑤√𝑤 𝑍𝑖) − Φ (√𝑤̂−𝑖

𝑤 𝑞1−𝛼/2 + 𝑤̂−𝑖 − 𝑤√𝑤 𝑍𝑖)]

→ 𝔼 [Φ(𝑞1−𝛼/2) − Φ(−𝑞1−𝛼/2)] = 1 − 𝛼.

In the last line, we used the fact that for fixed 𝑖, ̂𝐴−𝑖 converges to 𝐴 almost surely, i.e., 𝑤̂−𝑖
converges to 𝑤 almost surely, along with dominated convergence.

We make the following remarks.

1. The above result is only asymptotic. For small 𝑛 it may not perform well because it
is essentially ignoring the uncertainty in estimating 𝐴. A lot of the literature focused
on improving the properties of Eq. 5.8 for small 𝑛. Solutions have included analytic
corrections (Cox 1975; Yoshimori and Lahiri 2014), approximations inspired by hierar-
chical Bayes (Morris 1983; N. M. Laird and Louis 1987), as well as bootstrap methods
(N. M. Laird and Louis 1987; B. Efron 1987; Carlin and Gelfand 1991). For exam-
ple, Yoshimori and Lahiri (2014) construct a second-order efficient interval that satisfies
ℙ [𝜃𝑖 ∈ ℐ𝑖(𝐙)] = 1 − 𝛼 + 𝑂(𝑛−3/2).

2. Our result depended on the parametric assumption that 𝜃𝑖
iid∼ 𝒩(0, 𝐴). What about the

case wherein this assumption is violated? For example, suppose that 𝜃𝑖 ∼ 𝐺 where 𝐺 is
such that 𝔼𝐺 [𝜃2

𝑖 ] = 𝐴. Do intervals such as Eq. 5.8 have any guarantees in that case? As
a comparison, recall that in the case of shrinkage, even though James-Stein still had the
interpretation of mimicking the best linear estimator of 𝜃𝑖. Unfortunately, the answer is
negative. As an example, take 𝛼 = 0.05, then the coverage can be as low as 74%.2

5.3 Robust empirical Bayes confidence intervals

As mentioned in the last remark above, the Cox-EB intervals rely heavily on the normality of
the prior. Can we modify these to lead to valid marginal coverage when 𝜃𝑖

iid∼ 𝐺 with 𝔼𝐺 [𝜃2
𝑖 ] =

𝐴? Armstrong, Kolesár, and Plagborg-Møller (2022) present an ingenious construction with
this property.

2More generally, Armstrong, Kolesár, and Plagborg-Møller (2022) prove that at a fixed 𝛼, the coverage can
be as low as 1 − 1/ max(𝑞2

1−𝛼/2, 1).
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Their idea is the following. Instead of seeking to mimick the oracle credible interval in Exam-
ple 5.2, they propose to consider “oracle” intervals of the following form:

ℐ(𝑍; 𝜒, 𝐴) = 𝐴
𝐴 + 1𝑍 + 𝜒√ 𝐴

𝐴 + 1.

The above interval is parameterized by 𝜒. Note that if we take 𝜒 = 𝑞1−𝛼/2, then we recover the
oracle (1 − 𝛼)-credible intervals. Armstrong, Kolesár, and Plagborg-Møller (2022) recommend
a principled way to pick 𝜒 ≡ 𝜒(𝛼) > 𝑞1−𝛼/2. Their proposal is to pick 𝜒(𝛼) as follows:

𝜒(𝐴) = inf {𝜒 > 0 ∶ inf {ℙ𝐺 [𝜃 ∈ ℐ(𝑍; 𝜒, 𝐴)] ∶ 𝔼𝐺 [𝜃2] = 𝐴} ≥ 1 − 𝛼} . (5.10)
Then, by definition (and a continuity argument) we will have that:

ℙ𝐺 [𝜃 ∈ ℐ(𝑍; 𝜒(𝐴), 𝐴)] ≥ 1 − 𝛼, (5.11)
for any 𝐺 with 𝔼𝐺 [𝜃2] = 𝐴.

Furthermore, this leads to the following empirical Bayes interval. Let ̂𝐴 be an estimate of
𝔼𝐺 [𝜃2]. Then Armstrong, Kolesár, and Plagborg-Møller (2022) propose the following confi-
dence interval,

𝜃𝑖 ∈ ℐ(𝑍; 𝜒( ̂𝐴), ̂𝐴).
Asymptotic coverage analogous to Theorem 5.1 can also be established.

Let us try to take a closer look at Eq. 5.10. First note that for 𝐺 = 𝒩(0, 𝐴):
ℙ𝐺 [𝜃 ∈ ℐ(𝑍; 𝜒, 𝐴)] = 2Φ(𝜒) − 1.

Let us compute this for general 𝐺. We will do this by iterated expectation. Also let us write
𝑤 = 𝐴/(𝐴 + 1) and 𝑏 = 𝜃/𝐴. Then:

ℙ𝜃 [𝜃 ∈ ℐ(𝑍; 𝜒, 𝐴)] = ℙ𝜃 [|𝑤𝑍 − 𝜃| ≤ 𝜒√𝑤]
= ℙ𝜃 [|𝑍 − 𝜃 − 𝑏| ≤ 𝜒/√𝑤]
= Φ(𝑏 + 𝜒/√𝑤) − Φ(𝑏 − 𝜒/√𝑤)
=∶ 𝑟(𝑏, 𝜒/√𝑤).

The prior 𝐺 on 𝜃 with 𝔼𝐺 [𝜃2] = 𝐴 induces the prior 𝐻 on 𝑏 with:

𝔼𝐻 [𝑏2] = 𝔼𝐻 [ 𝜃2

𝐴2 ] = 1
𝐴.

Hence:
ℙ𝐺 [𝜃 ∈ ℐ(𝑍; 𝜒, 𝐴)] = 𝔼𝐻 [𝑟(𝑏, 𝜒/√𝑤)] .

Consider the following optimization problem:
minimize 𝔼𝐻 [𝑟(𝑏, 𝜒/√𝑤)] s.t. 𝔼𝐻 [𝑏2] . (5.12)

The above is a linear program in 𝐻 and can be computed numerically. Hence to compute
Eq. 5.10 it suffices to solve Eq. 5.12 for multiple values of 𝜒 and pick the smallest 𝜒 so that
the minimum value of the optimization problem is at least 1 − 𝛼.
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5.3.1 Average coverage in the compound decision problem

In the introduction of this chapter, we also discussed the plausible goal of constructing intervals
with the property:

1
𝑛

𝑛
∑
𝑖=1

ℙ𝜃𝑖
[𝜃𝑖 ∈ ℐ𝑖(𝐙)] ≥ 1 − 𝛼.

The construction of Armstrong, Kolesár, and Plagborg-Møller (2022) also enables such a guar-
antee asymptotically. The argument has a similar flavour as the compound decision results
we have already discussed.

Proposition 5.4. Consider the compound oracle intervals,

𝜃𝑖 ∈ ℐ𝐴𝐾𝑃 (𝑍𝑖; 𝜒(‖𝜽‖2 /𝑛), ‖𝜽‖2 /𝑛).

It holds that:
1
𝑛

𝑛
∑
𝑖=1

ℙ𝜃𝑖
[𝜃𝑖 ∈ ℐ𝐴𝐾𝑃 (𝑍𝑖; 𝜒(‖𝜽‖2 /𝑛), ‖𝜽‖2 /𝑛)] ≥ 1 − 𝛼.

Proof. Take the prior 𝐺 = 1
𝑛 ∑𝑛

𝑖=1 𝛿𝜃𝑖
. This prior has second moment 𝔼𝐺 [𝜃2] = ‖𝜽‖2 /𝑛. Next

notice that:

1
𝑛

𝑛
∑
𝑖=1

ℙ𝜃𝑖
[𝜃𝑖 ∈ ℐ𝐴𝐾𝑃 (𝑍𝑖; 𝜒(‖𝜃‖2 /𝑛), ‖𝜃‖2 /𝑛)] = ℙ𝐺 [𝜃 ∈ ℐ𝐴𝐾𝑃 (𝑍; 𝜒(‖𝜃‖2 /𝑛), ‖𝜃‖2 /𝑛)] ≥ 1−𝛼

The first equality follows from the compound argument, and the inequality follows from
Eq. 5.11.

Next note that we can consistently estimate (under some regularity) ∥𝜽2∥𝑛 by ̂𝐴 =
max{ 1

𝑛 ∑𝑛
𝑖=1 𝑍2

𝑖 − 1, 0} and so Armstrong, Kolesár, and Plagborg-Møller (2022) provide
conditions such that:

lim
𝑛→∞

1
𝑛

𝑛
∑
𝑖=1

ℙ𝜃𝑖
[𝜃𝑖 ∈ ℐ𝐴𝐾𝑃 (𝑍𝑖; 𝜒( ̂𝐴), ̂𝐴)] ≥ 1 − 𝛼.
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5.4 FAB—Frequentist Assisted by (empirical) Bayes intervals

In this section we will explain how to form confidence intervals/sets with the property
Eq. 5.7.

It will be convenient to start again by looking only at the 𝑛-th simple decision problem (and
momentarily ignoring the data 𝑍𝑗 for 𝑗 ≠ 𝑛). Suppose we are interested in forming a frequentist
confidence set 𝒮 for 𝜃𝑛. Suppose further that we have a hunch that 𝜃 ⋅∼ 𝐺 approximately holds.
We may then seek to choose our confidence set subject to the following criteria: first, it is a
frequentist confidence set, i.e., it has the coverage property in Definition 5.2 for all values
𝜃𝑛 ∈ Θ, and second, it has the smallest possible expected volume (Lebesgue mass) when we
also integrate with respect to the randomness 𝜃 ∼ 𝐺:

𝒮∗(⋅; 𝐺) ∈ argmin
𝒮(⋅)

𝔼𝐺 [𝜆𝐿𝑒𝑏(𝒮(𝑍𝑛))]

s.t. ℙ𝜃𝑛
[𝜃𝑛 ∈ 𝒮(𝑍𝑛)] ≥ 1 − 𝛼 for all 𝜃𝑛 ∈ Θ.

(5.13)

We make the dependence on 𝐺 of the optimal confidence set in Eq. 5.13 explicit by writing
𝒮∗(⋅; 𝐺). The above sets are called “FAB”—Frequentist Assisted by Bayes— by Yu and Hoff
(2018). We will explain how we can compute 𝒮∗(⋅; 𝐺) below.

First, however, we turn to our original tasks, i.e., the task of computing an empirical Bayes
interval for 𝜃𝑛 based on 𝑍1, … , 𝑍𝑛 such that Eq. 5.7 holds.

The idea is the following. 𝒮∗(⋅; 𝐺) depends on the choice of 𝐺: for any 𝐺 our confidence set
has frequentist coverage, however, it will have most power when indeed 𝜃𝑛 is approximately
distributed as 𝐺. Hence, instead of taking 𝐺 to be a hunch/guess, we may instead estimate it
through empirical Bayes:

1. Let 𝐺−𝑛 ∶= 𝐺(𝑍1, … , 𝑍𝑛−1) be an estimate of 𝐺 based on 𝑍1, … , 𝑍𝑛−1 but not 𝑍𝑛.

2. Report the empirical Bayes confidence set

𝒮𝑛(𝐙) ∶= 𝒮∗(𝑍𝑛; 𝐺−𝑛). (5.14)

This leave-one-out construction enables us to verify Eq. 5.7.

Theorem 5.2. The confidence set 𝒮𝑛(𝐙) Eq. 5.14 has frequentist coverage as in Eq. 5.7, that
is,

ℙ𝜽 [𝜃𝑛 ∈ 𝒮𝑛(𝐙)] ≥ 1 − 𝛼 for all 𝜽 ∈ Θ𝑛.
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Proof.
ℙ𝜽 [𝜃𝑛 ∈ 𝒮𝑛(𝐙)] = 𝔼𝜽 [ℙ𝜽 [𝜃𝑛 ∈ 𝒮∗(𝑍𝑛; 𝐺−𝑛) ∣ 𝑍1, … , 𝑍𝑛−1]]

≥ 𝔼𝜽 [1 − 𝛼] = 1 − 𝛼.
In going from the first to the second line, we used the fact that 𝑍𝑛 is independent of 𝑍1, … , 𝑍𝑛−1,
that 𝐺−𝑛 is a function of 𝑍1, … , 𝑍𝑛−1 (and so may be treated as deterministic conditionally
on the latter), and the fact that for any fixed 𝐺 the set 𝒮∗(𝑍𝑛; 𝐺) is a confidence set for 𝜃𝑛.

5.4.1 Constructing optimal FAB confidence sets

It remains to explain how we can compute optimal confidence sets as in Eq. 5.13. The basic
idea, which is due to Pratt (1961), and Pratt (1963), is to build on duality of confidence
sets and hypothesis testing. That is, for all 𝜃 we may define a a binary indicator function
𝜙𝜃(𝑧) ∈ {0, 1} such that

𝜃 ∈ 𝒮(𝑧) ⟺ 𝜙𝜃(𝑧) = 0. (5.15)

For fixed 𝜃0, 𝜙𝜃0
(𝑍) is a test of the null hypothesis 𝐻0 ∶ 𝜃 = 𝜃0: we reject 𝐻0 when 𝜙𝜃0

(𝑍) = 1.
If 𝒮(𝑧) is a 1 − 𝛼 confidence set for 𝜃, then 𝜙𝜃0

(𝑍) is a size 𝛼 test.3

Now fix a confidence 𝒮(⋅) and its associated testing function (𝜃, 𝑧) ↦ 𝜙𝜃(𝑧). Fix any 𝜃.

𝔼𝐺 [𝜆𝐿𝑒𝑏(𝒮(𝑍))] = 𝔼𝐺 [∫ 1(𝜃0 ∈ 𝒮(𝑍))𝑑𝜃0]

= ∫ ℙ𝐺 [𝜃0 ∈ 𝒮(𝑍𝑛)] 𝑑𝜃0

= ∫ (1 − ℙ𝐺 [𝜙𝜃0
= 1]) 𝑑𝜃0.

Thus to compute the optimal confidence set 𝒮. It suffices to construct for each 𝜃0 a test 𝜙𝜃0
that solves the following optimization problem:

maximize ℙ𝐺 [𝜙𝜃0
(𝑍) = 1] s.t. ℙ𝜃0

[𝜙𝜃0
(𝑍) = 1] ≤ 𝛼. (5.16)

This family of tests then yields an optimal confidence set via Eq. 5.15.

Example 5.4 (FAB with Gaussian noise and point mass at 0 (Pratt 1961)). Suppose we take
𝐺 = 𝛿0, a Dirac mass at 0 and that 𝑍 ∣ 𝜃 ∼ 𝒩(𝜃, 1). Then the confidence set 𝒮∗(𝑧; 𝛿0) (which
in fact is a confidence interval) is the following:

𝒮∗(𝑧; 𝛿0) = [min {0, 𝑍 − 𝑞1−𝛼} , max {0, 𝑍 + 𝑞1−𝛼}].
3Since:

ℙ𝜃0 [𝜙𝜃0 (𝑍) = 1] = ℙ𝜃0 [𝜃0 ∉ 𝒮(𝑧)] = 1 − ℙ𝜃0 [𝜃0 ∈ 𝒮(𝑧)] ≤ 𝛼.
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Before delving into the proof, let us make the following remark. Compared to the textbook
interval in Example 5.1, when 𝜃 ≈ 0, the above interval essentially avoids the “Bonferroni”
adjustment for looking at both tails. In such cases, this interval in Example 5.4 has approxi-
mately 85% of the length of the interval in Example 5.1.

Essentially this is the scope for adaptation in the above problem, i.e., one cannot do better
than 85% compared to Example 5.1 while maintaining a valid confidence interval (set). When
intervals are constructed by studentization (unknown variance), then the gains due to FAB
can be substantially larger than 85%, see Yu and Hoff (2018).

Proof. We may follow the recipe above. It will be convenient in this case to note the following.

𝔼0 [𝜆𝐿𝑒𝑏(𝒮(𝑍))] = ∫ (1 − ℙ𝐺 [𝜙𝜃0
= 1]) 𝑑𝜃0 = ∫

𝜃0≠0
(1 − ℙ𝐺 [𝜙𝜃0

= 1]) 𝑑𝜃0.

Hence we only need to construct tests as in Eq. 5.16 for 𝜃0 ≠ 0. The objective Eq. 5.16 then
states that we seek to find the most powerful test for the following comparison:

𝐻0 ∶ 𝜃 = 𝜃0 vs. 𝐻𝐴 ∶ 𝜃 = 0.

An optimal test is given by the Neyman-Pearson lemma.4 Hence for any 𝜃0 ≠ 0, an optimal
test is given by:

𝜙𝜃0
(𝑧) = 1 ( 𝑝(𝑧 ∣ 0)

𝑝(𝑧 ∣ 𝜃0) > 𝑘(𝜃0)) , with 𝑘(𝜃0) s.t. 𝔼𝜃0
[𝜙𝜃0

(𝑧)] = 𝛼.

Suppose first that 𝜃0 < 0. In that case, by Neyman-Pearson, we reject for large values of 𝑍,
i.e.,

𝜙𝜃0
(𝑍) = 1(𝑍 > 𝜃0 + 𝑞1−𝛼).

Analogously, for 𝜃0 > 0, Neyman-Pearson rejects for small values of 𝑍, i.e.,

𝜙𝜃0
(𝑍) = 1(𝑍 < 𝜃0 − 𝑞1−𝛼).

We seek to turn this into a confidence set via Eq. 5.15. Hence fix 𝑍. We seek to find all values
of 𝜃0 such that the tests constructed above do not reject. Hence:

Fix 𝜃0 < 0. We will not reject it if 𝑍 ≤ 𝜃0 + 𝑞1−𝛼, i.e., if 𝜃0 ≥ 𝑍 − 𝑞1−𝛼. Similarly, for 𝜃0 > 0,
we will not reject it if 𝑍 ≥ 𝜃0 − 𝑞1−𝛼, i.e., if 𝜃0 ≤ 𝑍 + 𝑞1−𝛼. We thus get the confidence interval
that we claimed above.

4We assume here that the distribution of 𝑍 is absolutely continuous with respect to the Lebesgue measure so
that we need not deal with randomized tests/confidence sets.
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5.5 Confidence sets for all latent parameters

Let us turn out attention to constructing confidence sets such that 𝜽 ∈ 𝒮(𝐙). The typical
frequentist confidence set is the following sphere:

𝒮(𝐙) = {𝜽 ∶ ‖𝜽 − 𝑍‖2 ≤ 𝜒2
𝑛,1−𝛼} ,

where 𝜒2
𝑛,1−𝛼 is the 1 − 𝛼 quantile of the 𝜒2-distribution with 𝑛 degrees of freedom. It holds

that:
ℙ𝜽 [𝜽 ∈ 𝒮(𝐙)] = 1 − 𝛼.

It turns out that for 𝑛 > 3, the above interval is inadmissible (just as ̂𝜽 = 𝐙 is inadmissible in
mean squared error for estimating 𝜽). Let:

̂𝜽𝐽𝑆,𝑎,+ = (1 − 𝑎
‖𝐙‖2 )

+
𝐙.

Then consider the sphere that is centered not at 𝐙, but instead at the (modified) James-Stein
estimator above:

𝒮𝐽𝑆,𝑎(𝐙) = {𝜽 ∶ ∥𝜽 − ̂𝜽𝐽𝑆,𝑎,+∥
2

≤ 𝜒2
𝑛,1−𝛼} .

The following theorem verifies a result conjectured by C. M. Stein (1962):

Theorem 5.3 (Hwang and Casella (1984)). Let 𝑛 ≥ 3 and let 𝑎 be sufficiently small (e.g.,
𝑎 ≲ 0.8(𝑛 − 2)). Then:

ℙ𝜽 [𝜽 ∈ 𝒮𝐽𝑆,𝑎(𝐙)] > 1 − 𝛼,
for all 𝜽 ∈ Θ𝑛.

5.6 Confidence intervals for empirical Bayes estimands

We now turn to the last task we discussed in Section 5.1.3, namely that of forming confidence
intervals about empirical Bayes estimands. For simplicity, we consider the Bayes decision
𝑡𝐺(𝑧) = 𝔼𝐺 [ℎ(𝜃) ∣ 𝑍 = 𝑧], where 𝑧 is fixed. How can we construct a confidence interval around
𝑡𝐺(𝑧)? We provide a general solution below that works for any choice of 𝑝(⋅ ∣ 𝜃), as long as
𝑍𝑖 ∈ ℝ.
Our starting point is to recall the Kolmogorov-Smirnov minimum distance estimator that
Robbins (1964) proposed to estimate 𝑡𝐺(𝑧) nonparametrically using 𝐺-modeling. First, let

𝐺 ∈ argmin{𝑑KS(𝐹𝐺, 𝐹𝑛) ∶ 𝐺 ∈ 𝒢} , (5.17)
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where 𝐹𝐺(⋅) is the marginal distribution of 𝑍, 𝐹𝑛(𝑡) = 1
𝑛 ∑𝑛

𝑖=1 1(𝑍𝑖 ≤ 𝑡) is the empirical
distribution of the 𝑍𝑖 and 𝑑KS is the Kolmogorov-Smirnov distance:

𝑑KS(𝐹1, 𝐹2) = sup
𝑧∈ℝ

|𝐹1(𝑧) − 𝐹2(𝑧)|

for any two distribution functions 𝐹1, 𝐹2 on ℝ. We already discussed this construction in
Eq. 1.16 from Chapter 1 for the special case where 𝒢 consists of all distributions supported
on Θ. Here Eq. 5.17 is slightly more general and allows the data analyst to specify a smaller
class of distributions 𝒢 on Θ.

Robbins (1964) used Eq. 5.17 to estimate 𝑡𝐺(𝑧) based on the plug-in principle, ̂𝑡𝐺(𝑧) = 𝑡𝐺(𝑧).
Here we will use an analogous construction for our goal of inference for 𝑡𝐺(𝑧). The idea is
the following. We have a strong probabilistic understanding of 𝑑KS(𝐹𝐺, 𝐹𝑛). In particular,
by Massart’s tight constant for the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Massart
1990), it holds that:

ℙ𝐺 [𝐹𝐺 ∈ ℱDKW
𝑛 (𝛼)] ≥ 1 − 𝛼, where

ℱDKW
𝑛 (𝛼) ∶= {𝐹 distribution ∶ 𝑑KS(𝐹 , 𝐹𝑛) ≤ √log (2/𝛼) /(2𝑛)} . (5.18)

Ignatiadis and Wager (2019) use the term “𝐹 -Localization” for a confidence set of marginal
distribution such as ℱDKW

𝑛 (𝛼). Eq. 5.18 can be used to form a confidence interval for 𝑡𝐺(𝑧) as
follows. We then form the 𝐹 -Localization confidence interval

ℐ𝛼(𝑧) = [ ̂𝑡−
𝛼(𝑧), ̂𝑡+

𝛼(𝑧)],
where:

̂𝑡−
𝛼(𝑧) = inf {𝑡𝐺(𝑧) ∣ 𝐺 ∈ 𝒢 (ℱ𝑛(𝛼))} , ̂𝑡+

𝛼(𝑧) = sup {𝑡𝐺(𝑧) ∣ 𝐺 ∈ 𝒢 (ℱ𝑛(𝛼))} ,
where 𝒢(ℱ) = {𝐺 ∈ 𝒢 ∣ 𝐹𝐺 ∈ ℱ} . (5.19)

What does this construction say? While the point estimate of Robbins (1964) only considers
the prior ̂𝐺 that minimizes the Kolmogorov-Smirnov distance, in Eq. 5.19 we account for all
plausible priors 𝐺 with a marginal distribution that is statistically plausible based on the
uncertainty characterization in Eq. 5.18.

It immediately follows that the 𝐹 -Localization intervals constructed above have finite-sample
frequentist coverage for 𝑡𝐺(𝑧):
It holds that:

ℙ𝐺 [𝑡𝐺(𝑧) ∈ ℐ𝛼(𝑧)] ≥ 1 − 𝛼.

Proof.
ℙ𝐺 [𝑡𝐺(𝑧) ∈ ℐ𝛼(𝑧)] ≥ ℙ𝐺 [ℱDKW

𝑛 (𝛼)] ≥ 1 − 𝛼.
The first inequality follows from the definition of the 𝐹 -Localization interval, and the second
inequality from Eq. 5.18.
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5.7 Further bibliographic remarks

Cox (1975) develops results for intervals with the property Eq. 5.1 by treating them as a
special case of prediction intervals. Morris (1983) uses the term “empirical Bayes intervals”
also for intervals with the property Eq. 5.1 (as well as intervals with the property Eq. 5.5). We
prefer to reserve the terminology only for the latter, since the definition in Eq. 5.1 pertains to
a simple statistical decision problem—and does not require, e.g., borrowing information from
parallel related statistical decision problems. Further results and practical constructions for
such intervals with an emphasis on parametric problems are given by N. M. Laird and Louis
(1987), Carlin and Gelfand (1990), and Carlin and Gelfand (1991). Section 5.1.2 closely follows
and elaborates on Jiang (2019), which is a discussion paper of Bradley Efron (2019). Koenker
(2020) compares some more nonparametric approaches for the construction of empirical Bayes
intervals for individual latent parameters.

We refer to Casella and Hwang (2012) for a review of the historical developments of empirical
Bayes confidence sets for all latent parameters that elaborates on Section 5.5. Some important
references include Samworth (2005) and Bradley Efron (2006).

Ignatiadis and Wager (2022) develop general methods for confidence intervals of empirical
Bayes estimands including the 𝐹 -Localization method described in Section 5.6. In particular,
they describe how the optimization problems in Eq. 5.19 can be solved efficiently using convex
programming when 𝒢 is convex, and they also develop alternative intervals based on affine min-
imax estimators. The idea of leveraging the Kolmogorov-Smirnov band around the marginal
distribution for finite-sample inference (as in the approach of Section 5.6) has a long history in
statistics. For example, Anderson (1969) suggested to use the Kolmogorov-Smirnov band to
form confidence intervals for the mean of a [0, 1]-valued random variable, as follows: one takes
the minimum, resp. maximum of ∫ 𝑧𝑑𝐹(𝑧) subject to 𝐹 ∈ ℱDKW

𝑛 (𝛼) and 𝐹 supported on [0, 1];
also see Romano and Wolf (2000). Furthermore, one may construct other 𝐹 -Localizations, i.e.,
confidence sets of distributions, beyond Eq. 5.18. We refer to Lord and Cressie (1975), Lord
and Stocking (1976), Greenshtein and Itskov (2018), and Ignatiadis and Wager (2022) for such
constructions and their application to empirical Bayes problems.
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6 Exponential Families, Tweedie’s Formula,
and F-modeling

6.1 Preliminaries: Exponential families

Consider a random vector 𝑍 ∈ ℝ𝑝 having a density, with respect to (w.r.t.) a dominating
measure 𝜆, parametrized by 𝜃 ∶= (𝜃1, … , 𝜃𝑠) ∈ ℝ𝑠 and expressible as:

𝑝(𝑧 ∣ 𝜃) ∶= exp [
𝑠

∑
𝑗=1

𝜃𝑗𝑇𝑗(𝑧) − 𝐴(𝜃)]ℎ(𝑧), for 𝑧 ∈ ℝ𝑝. (6.1)

Here ℎ ∶ ℝ𝑝 → ℝ is a nonnegative function, 𝑇 = (𝑇1, … , 𝑇𝑠) is a measurable function from ℝ𝑝

to ℝ𝑠, and the parameter space is the set

Ξ ∶= {𝜃 ∈ ℝ𝑠 ∶ 𝐴(𝜃) < ∞}, (6.2)

where the function 𝐴 ∶ Ξ → ℝ (sometimes referred to as the log-partition function or the
cumulant function) is defined as

𝐴(𝜃) ∶= log∫ exp [
𝑠

∑
𝑗=1

𝜃𝑗𝑇𝑗(𝑧)]ℎ(𝑧)𝑑𝜆(𝑧). (6.3)

We will assume that Ξ is a non-empty open set (in ℝ𝑠).

In this case, 𝑍 is said to belong to a regular 𝑠-parameter exponential family, and 𝜃 is the
natural or canonical parametrization.

There are many examples of parametric families belonging to an exponential family, e.g.,
Gaussian, binomial, multinomial, Poisson, gamma, and beta distributions, as well as many
others. Here are some examples.

Example 6.1 (Poisson distribution). Consider the Poisson distribution parametrized by 𝜇 ∈
(0, ∞):

𝑝𝜇(𝑧) = 𝜇𝑧𝑒−𝜇

𝑧! , for 𝑧 = 0, 1, 2, … . (6.4)

The above family is indeed a 1-parameter exponential family with natural parameter 𝜃 ∶= log𝜇
and Ξ = ℝ. Here 𝜆 is the counting measure on the nonnegative integers, 𝑇 (𝑧) = 𝑧, ℎ(𝑧) = 1

𝑧!
and 𝐴(𝜃) = log∑∞

𝑧=0 𝑒𝜃𝑧 1
𝑧! = log(𝑒𝑒𝜃) = 𝑒𝜃.
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Example 6.2 (Chi-square distribution). Suppose that 𝑍 ≡ 𝑆2 ∣ 𝜎2 ∼ 𝜎2
𝜈 𝜒2

𝜈 where 𝜒2
𝜈 is the

chi-squared distribution with 𝜈 degrees of freedom, i.e.,

𝑝𝜎2(𝑠2) = 𝜈𝜈/2

(𝜎2)𝜈/2 2𝜈/2Γ(𝜈/2)
(𝑠2)𝜈/2−1 exp(− 𝜈𝑠2

2𝜎2 ) , for 𝑠2 > 0. (6.5)

The above family is a 1-parameter exponential family with natural parameter 𝜃 ∶= − 𝜈
2𝜎2 and

Ξ = (−∞, 0). Here 𝑇 (𝑠2) = 𝑠2 (𝑇 (𝑧) = 𝑧),

ℎ(𝑠2) = 1
Γ(𝜈/2) (𝑠2)𝜈/2−1 1(0,∞)(𝑠2) and 𝐴(𝜃) = 𝜈

2 log(−𝜃).

Example 6.3 (Multivariate normal). Consider the family of multivariate normal distributions
on ℝ𝑝 with a fixed known nonsingular covariance matrix Σ ∈ ℝ𝑝×𝑝 and unknown mean vector
𝜇 = (𝜇1, … , 𝜇𝑝) ∈ ℝ𝑝, i.e., 𝑍 ∼ 𝑁𝑝(𝜇, Σ) has density given by

𝑝𝜇(𝑧) = 𝑒− 1
2 (𝑧−𝜇)⊤Σ−1(𝑧−𝜇)

√(2𝜋)𝑝|Σ|
, for 𝑧 ∈ ℝ𝑝. (6.6)

It is easy to check that Eq. 6.6 can be expressed in the form Eq. 6.1 where we take

𝜃 ∶= Σ−1𝜇, 𝑇 (𝑧) ∶= 𝑧, 𝐴(𝜃) ∶= 1
2𝜃⊤Σ𝜃 and ℎ(𝑧) ≡ 𝑝0(𝑧) = 𝑒− 1

2 𝑧⊤Σ−1𝑧

√(2𝜋)𝑝|Σ|
.

Suppose that 𝑍 ∼ 𝑓𝜃 as in Eq. 6.1. Here are some important properties of exponential
families.

1. The support of 𝑍 (i.e., 𝑝(𝑧 ∣ 𝜃) > 0) does not depend on 𝜃. Let 𝒵 ⊂ ℝ𝑝 denote the
support of 𝑍.

2. It is clear that the statistic 𝑇 (𝑍) is a sufficient statistic for this family. It can be shown
that1

𝔼𝜃 [𝑇𝑗(𝑍)] = 𝜕𝐴(𝜃)
𝜕𝜃𝑗

, for 𝑗 = 1, … , 𝑠. (6.7)

3. The natural parameter space Ξ is a convex set and the cumulant function 𝐴(⋅) is a convex
function.

1A proof of this can be obtained as follows. Recall Eq. 6.3. Thus,

𝑒𝐴(𝜃) = ∫ 𝑒𝜃⊤𝑇(𝑧)ℎ(𝑧)𝑑𝜆(𝑧).

Differentiating this expression with respect to 𝜃𝑗, which can be done under the integral if 𝜃 ∈ Ξ𝑜, gives

𝑒𝐴(𝜃) 𝜕𝐴(𝜃)
𝜕𝜃𝑗

= ∫ 𝑇𝑗(𝑧)𝑒𝜃⊤𝑇(𝑧)ℎ(𝑧) 𝑑𝜆(𝑧) ⇒ 𝜕𝐴(𝜃)
𝜕𝜃𝑗

= ∫ 𝑇𝑗(𝑧)𝑝(𝑧 ∣ 𝜃) 𝑑𝜆(𝑧) = 𝔼𝜃 [𝑇𝑗(𝑍)] .
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4. The moment generating function of 𝑇 ≡ (𝑇1(𝑍), … , 𝑇𝑠(𝑍)), for 𝑢 ∈ ℝ𝑠 such that 𝑢+𝜃 ∈ Ξ,
is

𝑀𝑇 (𝑢) ∶= 𝔼 [𝑒𝑢⊤𝑇 ] = ∫ 𝑒𝑢⊤𝑇 (𝑧)𝑒𝜃⊤𝑇 (𝑧)−𝐴(𝜃)ℎ(𝑧) 𝑑𝜆(𝑧)

= 𝑒𝐴(𝑢+𝜃)−𝐴(𝜃) ∫ 𝑝(𝑧 ∣ 𝑢 + 𝜃) 𝑑𝜆(𝑧) = 𝑒𝐴(𝑢+𝜃)−𝐴(𝜃).

Noting that if 𝑀𝑇 (⋅) is finite in some neighborhood of the origin, then 𝑀𝑇 has continuous
derivatives of all orders at the origin, and for 𝑟𝑗 ≥ 0, for 𝑗 = 1, … , 𝑠,

𝛼𝑟1,…,𝑟𝑠
∶= 𝔼 [𝑇 𝑟1

1 (𝑍) × ⋯ × 𝑇 𝑟𝑠𝑠 (𝑍)] = 𝜕𝑟1

𝜕𝑢𝑟1
1

… 𝜕𝑟𝑠

𝜕𝑢𝑟𝑠𝑠
𝑀𝑇 (𝑢)∣

𝑢=0
.

Thus, when 𝑟𝑗 = 1 and 𝑟𝑘 = 0 for all 𝑘 ≠ 𝑗, we obtain Eq. 6.7.

5. The cumulant generating function is

𝐾𝑇 (𝑢) ∶= log𝑀𝑇 (𝑢) = 𝐴(𝑢 + 𝜃) − 𝐴(𝜃). (6.8)

See Keener (2010b, chap. 10) for a more detailed study of exponential families.

6.2 Tweedie’s formula

Now suppose that Θ is assumed to have a prior distribution 𝐺 (on ℝ𝑠). Thus our model
becomes:

Θ ∼ 𝐺 and 𝑍 ∣ Θ = 𝜃 ∼ 𝑝(⋅ ∣ 𝜃), (6.9)

where we assume that 𝑝(⋅ ∣ 𝜃) comes from the exponential family Eq. 6.1. Then the marginal
density of 𝑍 (w.r.t.~𝜆) is

𝑓𝐺(𝑧) ∶= ∫ 𝑝(𝑧 ∣ 𝜃) 𝑑𝐺(𝜃), for 𝑧 ∈ ℝ𝑝.

Let 𝒵 be the support of the marginal distribution of 𝑍. Now Bayes rule provides the posterior
density of Θ given 𝑍. Suppose that Θ has density 𝑔(⋅), w.r.t. a dominating measure 𝜉, with
support Ω ⊂ Ξ. Then, the posterior density of Θ given 𝑍 = 𝑧 (w.r.t.~𝜉) is given by, for 𝜃 ∈ Ω
and 𝑧 ∈ 𝒵,

𝑝Θ|𝑍(𝜃 ∣ 𝑧) = 𝑝(𝑧 ∣ 𝜃)𝑔(𝜃)
𝑓𝐺(𝑧) = 𝑒𝜃⊤𝑇 (𝑧)−𝐴(𝜃)ℎ(𝑧)𝑔(𝜃)

𝑓𝐺(𝑧) = 𝑒𝜃⊤𝑇 (𝑧)−𝜅(𝑧)𝑒−𝐴(𝜃)𝑔(𝜃), (6.10)

where
𝜅(𝑧) ∶= log(𝑓𝐺(𝑧)

ℎ(𝑧) ) , for 𝑧 ∈ 𝒵. (6.11)
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This implies that Θ ∣ 𝑍 = 𝑧 is also an exponential family with canonical parameter 𝑇 (𝑧),
sufficient statistic Θ, and log-partition function 𝜅(𝑧). Thus, the cumulant generating function
is

log𝔼 [𝑒Θ⊤𝑡 ∣ 𝑍 = 𝑧] = 𝜅(𝑡 + 𝑧) − 𝜅(𝑧) (6.12)

for 𝑧 ∈ 𝒵 such that 𝑡 + 𝑧 ∈ 𝒵.

Tweedie’s formula, given below, calculates the posterior expectation of Θ given 𝑍 = 𝑧 in the
setting Eq. 6.9.

Lemma 6.1 (Tweedie’s formula). For 𝑧 ∈ 𝒵, we have

𝔼 [Θ ∣ 𝑍 = 𝑧] = ∇𝜅(𝑧) = ∇𝑓𝐺(𝑧)
𝑓𝐺(𝑧) − ∇ℎ(𝑧)

ℎ(𝑧) . (6.13)

Proof. The result is a direct consequence of the fact that the distribution of Θ ∣ 𝑍 = 𝑧 is
an 𝑠-parameter exponential family with log-partition function 𝜅(⋅) defined via Eq. 6.11: By
property 1. above the expectation of the sufficient statistic Θ can then be expressed as the
gradient of the log-partition function.

For 𝑝 = 𝑠 = 1, the above formula for the Gaussian case was given in Robbins (1956). Bradley
Efron (2011) calls this Tweedie’s formula since Robbins attributes it to M.C.K. Tweedie; how-
ever it appears earlier in Dyson (1926) who credits it to the English astronomer Arthur Ed-
dington.

Lemma 6.2. Consider model Eq. 6.9 where we assume that 𝑝(⋅ ∣ 𝜃), for 𝜃 ∈ Ξ, is a member of
an exponential family of distributions as in Eq. 6.1 with 𝑇 (𝑧) = 𝑧 and 𝑠 = 𝑝. Suppose further
that ℎ(⋅) in Eq. 6.1 integrates to 1 (w.r.t.~𝜆). Then 𝜅(⋅), as defined in Eq. 6.11, is a convex
function. As a consequence, 𝔼 [Θ ∣ 𝑍 = 𝑧] is the gradient of a convex function.

Proof. Observe that under the assumptions of the lemma, from Eq. 6.11 we see that the
distribution of Θ ∣ 𝑍 = 𝑧 is an 𝑠-parameter exponential family with log-partition function
𝜅(⋅) defined via Eq. 6.11. As the log-partition function 𝜅(⋅) is known to be convex, the result
follows.
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6.2.1 Tweedie’s formula for multivariate normal distribution

Suppose now that 𝑍 has multivariate normal distribution with known covariance matrix as in
Example 6.3. Then, for 𝑧 ∈ ℝ𝑝,

𝔼 [Θ ∣ 𝑍 = 𝑧] = ∇𝜅(𝑧) = Σ−1𝑧 + ∇𝑓𝐺(𝑧)
𝑓𝐺(𝑧) ,

where the last equality follows from Eq. 6.13 and the fact that ∇ℎ(𝑧) = −ℎ(𝑧)(Σ−1𝑧). Thus,
the Bayes estimator of mean 𝜇 in Eq. 6.6 is

𝔼 [𝜇 ∣ 𝑍 = 𝑧] = 𝑧 + Σ∇𝑓𝐺(𝑧)
𝑓𝐺(𝑧) . (6.14)

6.2.2 A Tweedie-like formula for the 𝜒2-distribution

Now we consider the 𝜒2-distribution from Example 6.2. As we already explained, the above
lies in an exponential family with natural parameters 𝜃 = − 𝜈

2𝜎2 . In fact, we could have
equivalently parameterized it as an exponential family with natural parameter 𝜏2 ∶= 1/𝜎2,
that is, the precision.

Exercise 6.1. Use Tweedie’s formula to derive a formula for 𝔼 [ 1
𝜎2 ∣ 𝑍 = 𝑧] .

The 𝜒2-case is another example where we have access to an F-formula that does not follow
from Tweedie’s result. The following result is due to Robbins (1982) (also see Gu and Koenker
(2017)).

𝔼 [𝜎2 ∣ 𝑆2 = 𝑠2] = 𝜈
2

(𝑠2)𝜈/2−1

𝑓𝐺(𝑠2) ∫
∞

𝑠2
(𝑡2)1−𝜈/2 𝑓𝐺(𝑡2)𝑑𝑡2.

Proof. We will use the following observation:

∫
∞

𝑠2
exp(− 𝜈𝑡2

2𝜎2 ) 𝑑𝑡2 = − [2𝜎2

𝜈 exp(− 𝜈𝑡2

2𝜎2 )]
∞

𝑠2
= 2𝜎2

𝜈 exp(− 𝜈𝑠2

2𝜎2 ) .
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Then, letting 𝐶 ∶= (𝜈/2)𝜈/2

Γ(𝜈/2) ,

∫
∞

0
𝜎2𝑝(𝑠2 ∣ 𝜎2)𝑑𝐺(𝜎2)

= ∫
∞

0

𝜈
2

2𝜎2

𝜈 𝑝(𝑠2 ∣ 𝜎2)𝑑𝐺(𝜎2)

= 𝐶 ∫
∞

0

𝜈
2 ⋅ (𝑠2)𝜈/2−1 (𝜎−2)𝜈/2 ⋅ 2𝜎2

𝜈 exp(− 𝜈𝑠2

2𝜎2 ) 𝑑𝐺(𝜎2)

= 𝐶 ∫
∞

0

𝜈
2 (𝑠2)𝜈/2−1 (𝜎−2)𝜈/2 (∫

∞

𝑠2
exp(− 𝜈𝑡2

2𝜎2 ) 𝑑𝑡2) 𝑑𝐺(𝜎2)

= ∫
∞

𝑠2

𝜈
2 (𝑠2)𝜈/2−1 (𝑡2)1−𝜈/2 ∫

∞

0
𝐶 (𝑡2)𝜈/2−1 (𝜎−2)𝜈/2 exp(− 𝜈𝑡2

2𝜎2 ) 𝑑𝐺(𝜎2)𝑑𝑡2

= 𝜈
2 (𝑠2)𝜈/2−1 ∫

∞

𝑠2
(𝑡2)1−𝜈/2 𝑓𝐺(𝑡2)𝑑𝑡2.

6.3 Compound decisions and 𝐹 -modeling

As we have seen before, e.g., in Section 1.4.1 and Section 1.4.2 of Chapter 1, empirical Bayes
approaches typically follow one of two strategies: 𝐹 -modeling or 𝐺-modeling. 𝐹 -modeling
is not always possible, however it is, when a Tweedie-type formula is available, as in this
chapter. In the remainder of this chapter, we will present an example of an application of
the 𝐹 -modeling approach for the compound estimation of normal means. We will present a
𝐺-modeling strategy for the same problem in Chapter 7.

Before providing results for the compound estimation of normal means, we first present more
general results on compound estimation.

6.3.1 Symmetric decisions

Consider the setting of Definition 1.2 in Chapter 1 where we have unknown parameters
𝜃1, … , 𝜃𝑛 and we observe independent random variables

𝑍𝑖 ∼ 𝑝(⋅ ∣ 𝜃𝑖), for 𝑖 = 1, … , 𝑛. (6.15)
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A natural class of decision functions is the class of *simple symmetric estimators.2 This is the
class of estimators 𝚫(𝐙) ≡ 𝚫(𝐙|𝑡(⋅)) of the form

𝚫(𝐙) ∶= (𝑡(𝑍1), … , 𝑡(𝑍𝑛)) (6.16)

for some function 𝑡 ∶ ℝ → ℝ. Given 𝜽 = (𝜃1, … , 𝜃𝑛), let

𝑡∗
𝜽 ∶= argmin

𝑡∶ℝ→ℝ
𝑅(𝚫(⋅|𝑡), 𝜽) (6.17)

where the infimum above is over all measurable functions 𝑡 ∶ ℝ → ℝ; we explicitly denote the
dependence of the above estimator on 𝜽.
Consider an oracle that knows the value of the vector 𝜽 but must use a simple symmetric
estimator. Such an oracle would use the estimator 𝚫(𝐙|𝑡∗

𝜽), where 𝑡∗
𝜽 is defined in Eq. 6.16.

The goal of compound decision theory is to achieve nearly the risk obtained by such an oracle,
but by using a “legitimate” estimator, one that may involve the entire vector of observations
𝐙 but does not involve knowledge of the parameter vector 𝜽.
Empirical Bayes: The compound estimation of the vector 𝜽 is closely related to the Bayes
estimation of a single random observation. In this Bayes problem, we estimate a random
parameter 𝑀 based on 𝑍 such that:

𝑀 ∼ 𝐺, 𝑍 ∣ 𝑀 ∼ 𝑝(⋅ ∣ 𝑀), (6.18)

where 𝐺 is the unknown prior distribution. Here, the target is the Bayes procedure 𝑡𝐺, i.e.,
the estimator that minimizes the expected average (Bayes) risk under 𝐺:

𝑅(𝑡(⋅), 𝐺) = 𝔼𝐺 [ℓ(𝑡(𝑍), 𝑀)] = ∫ 𝔼𝜃 [ℓ(𝑡(𝑍), 𝜃)] 𝑑𝐺(𝜃).

The goal is to find a procedure 𝑡(⋅) whose expected risk under 𝐺 is suitably near that of 𝑡𝐺 as
𝑛 → ∞, when 𝐺 is unknown.

6.3.2 Connection between the compound and the empirical Bayes settings

The prior distribution 𝐺 which naturally matches the unknown parameters {𝜃𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}
in Eq. 6.15 in the compound setting is the empirical distribution 𝐺𝑛 of the 𝜃𝑖’s:

𝐺𝑛 ∶= 1
𝑛

𝑛
∑
𝑖=1

𝛿𝜃𝑖
. (6.19)

The fundamental theorem of compound decisions (Robbins (1951)) asserts that the compound
risk of a simple symmetric (aka separable) estimator 𝚫(𝐙) ≡ 𝚫(𝐙|𝑡) (see Eq. 6.16) in the

2Such an estimator is also sometimes called a ‘separable’ estimator as one uses a fixed deterministic function
of the 𝑖-th observation to estimate the 𝑖-th mean.
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multivariate model Eq. 6.15 is identical to the Bayes risk of the same rule 𝑡(𝑍) under the prior
Eq. 6.19 in the univariate model Eq. 6.18, i.e.,

𝑅(𝚫(⋅|𝑡), 𝜽) = 1
𝑛

𝑛
∑
𝑖=1

𝔼𝜃𝑖
[ℓ(𝑡(𝑍𝑖), 𝜃𝑖)] = 𝔼𝐺𝑛

[ℓ(𝑡(𝑍), 𝑀)] . (6.20)

As a consequence of the above formal relationship, we can connect the Bayes procedure (under
squared error loss) Δ𝐺(𝐙) = (𝑡𝐺(𝑍1), … , 𝑡𝐺(𝑍𝑛)), for a specified prior 𝐺, which is, of course,
the posterior mean given by the formula:

𝑡𝐺(𝑧) ∶= 𝔼 [𝑀 ∣ 𝑍 = 𝑧] = ∫ 𝑢 𝑝 (𝑧 ∣ 𝑢) 𝑑𝐺(𝑢)
∫ 𝑝 (𝑧 ∣ 𝑢) 𝑑𝐺(𝑢) , (6.21)

to the compound setting to obtain an explicit form for 𝑡∗
𝜽 (see Eq. 6.17):

𝑡∗
𝜽(𝑢) ∶= ∑𝑛

𝑖=1 𝜃𝑖 𝑝 (𝑢 ∣ 𝜃𝑖)
∑𝑛

𝑖=1 𝑝 (𝑢 ∣ 𝜃𝑖)
. (6.22)

6.3.3 Compound estimation of normal means

In this subsection we take 𝑝(⋅ ∣ 𝜃𝑖) = 𝜙(⋅ − 𝜃𝑖) corresponding to the normal means problem
(here 𝜙 is the standard normal density function).

Consider this problem for a general variance 𝜎2; that is, suppose 𝑍 ∣ 𝑀 ∼ 𝑁(𝑀, 𝜎2), where
𝑀 ∼ 𝐺. Let 𝑓𝐺,𝜎2 be the marginal density of 𝑍, i.e.,

𝑓𝐺,𝜎2(𝑧) ∶= ∫ 1
𝜎𝜙 (𝑧 − 𝜃

𝜎 ) 𝑑𝐺(𝜃), for 𝑧 ∈ ℝ. (6.23)

By Tweedie’s formula (see Eq. 6.14) the Bayes estimator (under squared error loss) is given
by

𝑡𝐺,𝜎2(𝑧) ∶= 𝔼 [𝑀 ∣ 𝑍 = 𝑧] = 1
𝑓𝐺,𝜎2(𝑧) ∫ 𝑢 1

𝜎𝜙 (𝑧 − 𝑢
𝜎 ) 𝑑𝐺(𝑢)

= 𝑧 + 𝜎2 𝑓 ′
𝐺,𝜎2(𝑧)

𝑓𝐺,𝜎2(𝑧) .
(6.24)

Here 𝑓 ′
𝐺,𝜎2(𝑧) is the derivative of 𝑓𝐺,𝜎2(𝑧).

In this section we consider estimation of 𝑡𝐺(⋅) ≡ 𝑡𝐺,1(⋅) and 𝑡∗
𝜽 (see Eq. 6.22). Our approach

will take advantage of Tweedie’s formula above which directly relates the quantity of interest
𝑡𝐺(⋅) to 𝑓𝐺 ≡ 𝑓𝐺,1, which is the marginal density of the observations 𝑍1, … , 𝑍𝑛. Moreover, it
suggests a natural estimator for 𝑡𝐺(⋅) ≡ 𝑡𝐺,1(⋅) of the form:

̂𝑡(𝑧) ∶= 𝑧 +
̂𝑓 ′(𝑧)
̂𝑓(𝑧)

, (6.25)
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where ̂𝑓 ′(⋅) and ̂𝑓(⋅) are appropriate estimators for the marginal density (of the data) 𝑓𝐺,1(⋅) ≡
𝑓𝐺(⋅) and its derivative 𝑓 ′

𝐺(⋅).

Remark. All the equations obtained so far for the empirical Bayes setup have a parallel deriva-
tion and presentation in the compound decision setup for a given 𝜽 = (𝜃1, … , 𝜃𝑛), where
𝐺𝑛 = 1

𝑛 ∑𝑛
𝑖=1 𝛿𝜃𝑖

— the empirical distribution determined by the components of 𝜽 — plays
the role of 𝐺; for example, comparing Eq. 6.22 and Eq. 6.24 we get

𝑡∗
𝜽(𝑧) ∶= 𝑡𝐺𝑛,1(𝑧).

Similarly, we denote

𝑡∗
𝜽,𝜎2(𝑧) ∶= 𝑡𝐺𝑛,𝜎2(𝑧) = 𝑧 + 𝜎2 𝑓 ′

𝐺𝑛,𝜎2(𝑧)
𝑓𝐺𝑛,𝜎2(𝑧) , where 𝑓𝐺𝑛,𝜎2(𝑧) = 1

𝑛
𝑛

∑
𝑖=1

1
𝜎𝜙 (𝑧 − 𝜃𝑖

𝜎 ) .

In the following we will consider kernel estimators of 𝑓𝐺 and 𝑓 ′
𝐺 and study the risk consistency

of ̂𝑡 as in Brown and Greenshtein (2009). Define the kernel density estimator (obtained from
the data 𝐙) as

̂𝑓(𝑧) ≡ ̂𝑓ℎ(𝑧) ∶= 1
𝑛ℎ

𝑛
∑
𝑖=1

𝜙 (𝑧 − 𝑍𝑖
ℎ ) , (6.26)

and its derivative as

̂𝑓 ′(𝑧) ≡ ̂𝑓 ′
ℎ(𝑧) ∶= 1

𝑛ℎ
𝑛

∑
𝑖=1

(𝑍𝑖 − 𝑧
ℎ2 ) 𝜙 (𝑧 − 𝑍𝑖

ℎ ) ,

where 𝜙(⋅) is the normal kernel (i.e., the standard normal density). The subscript ℎ > 0 is the
bandwidth for the kernel estimator. Typically, ℎ ≡ ℎ𝑛 will depend on 𝑛, and lim𝑛→∞ ℎ𝑛 = 0.
Let

𝑣𝑛 ≡ 𝑣 = 1 + ℎ2.
The following simple lemma establishes that ̂𝑓ℎ(𝑧) and ̂𝑓 ′

ℎ(𝑧) are unbiased estimates of 𝑓𝐺𝑛,𝑣,
and 𝑓 ′

𝐺𝑛,𝑣 in the compound setting. It also further interprets their form. Let 𝐹𝑛 denote the
empirical distribution determined by 𝑍1, … , 𝑍𝑛, i.e.,

𝐹𝑛 ∶= 1
𝑛

𝑛
∑
𝑖=1

𝛿𝑍𝑖
.

Lemma 6.3. Let ℎ > 0 and 𝑣 = 1 + ℎ2. Suppose that 𝑍𝑖 ∼ 𝑁(𝜃𝑖, 1), for 𝑖 = 1, … , 𝑛, are
independent. Then, we have the following relationships: for 𝑧 ∈ ℝ,

̂𝑓ℎ(𝑧) = 𝑓𝐹𝑛,ℎ(𝑧), ̂𝑓 ′
ℎ(𝑧) = 𝑓 ′

𝐹𝑛,ℎ(𝑧),

and
𝔼 [ ̂𝑓ℎ(𝑧)] = 𝑓𝐺𝑛,𝑣(𝑧), 𝔼 [ ̂𝑓 ′

ℎ(𝑧)] = 𝑓 ′
𝐺𝑛,𝑣(𝑧),
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Proof. We write
̂𝑓ℎ(𝑧) = ∫ 1

ℎ𝜙 (𝑧 − 𝑢
ℎ ) 𝑑𝐹𝑛(𝑢) = 𝑓𝐹𝑛,ℎ(𝑧),

since ℎ−1𝜙(⋅/ℎ) is the normal density with variance ℎ2. Similarly, we can derive the expression
for ̂𝑓 ′

ℎ(𝑧).
Note that

𝔼 [ ̂𝑓ℎ(𝑧)] = 1
𝑛

𝑛
∑
𝑖=1

𝔼 [ 1
ℎ𝜙 (𝑧 − 𝑍𝑖

ℎ )] = 1
𝑛

𝑛
∑
𝑖=1

{∫ 1
ℎ𝜙 (𝑧 − 𝑦

ℎ ) 𝜙 (𝑦 − 𝜃𝑖) 𝑑𝑦}

= 1
𝑛

𝑛
∑
𝑖=1

1
𝑣𝜙 (𝑧 − 𝜃𝑖

𝑣 ) = 𝑓𝐺𝑛,𝑣(𝑧),

where the last step can be quickly seen by observing that the term within the braces is the
density function of 𝑍 where 𝑌 ∼ 𝑁(𝜃𝑖, 1) and 𝑍 ∣ 𝑌 ∼ 𝑁(𝑌 , ℎ2); thus, 𝑍 ∼ 𝑁(𝜃𝑖, 𝑣2) where
𝑣2 = 1 + ℎ2. The expression for 𝔼 [ ̂𝑓 ′

ℎ(𝑧)] can also be derived analogously.

In light of the above lemma, our estimator Eq. 6.25 may be written as

̂𝑡(𝑧) = 𝑧 +
̂𝑓 ′

ℎ(𝑧)
̂𝑓ℎ(𝑧)

≈ 𝑧 +
𝑓 ′

𝐺𝑛,𝑣(𝑧)
𝑓𝐺𝑛,𝑣(𝑧) ≈ 𝑡∗

𝜽,𝑣(𝑧) ≈ 𝑡∗
𝜽(𝑧), (6.27)

where in the first approximation step we have replaced the terms by their expectations, as
in Lemma 6.3, and in the second and third approximation steps we have used the fact that
𝑣 ≡ 𝑣𝑛 = 1 + ℎ2

𝑛 → 1 (or ℎ𝑛 → 0).
A formal justification of the above heuristic is a bit more technical, that we only discuss briefly;
see Theorem 1 and its proof in Brown and Greenshtein (2009). To state the main theoretical
result here we consider the setup of a triangular array, where, at stage 𝑛, the parameter space,
denoted Θ𝑛, is of dimension 𝑛. We write 𝜽𝑛 = (𝜃𝑛

1 , … , 𝜃𝑛
𝑛) ∈ Θ𝑛.

For every 𝜖 > 0, we assume

|𝜃𝑛
𝑖 | ≤ 𝐶𝑛 = 𝑜(𝑛𝜖), for 𝑖 = 1, … , 𝑛. (6.28)

Such configurations include the interesting cases where 𝜃𝑛
𝑖 = 𝑂(√log𝑛).

We introduce the following slight modification for ̂𝑡(⋅): a truncated estimator ̃𝑡(⋅) which at
stage 𝑛 is of the form

̃𝑡(𝑧) ∶= s𝑖𝑔𝑛( ̂𝑡(𝑧)) × min{| ̂𝑡(𝑧)|, 𝐶𝑛}, for 𝑧 ∈ ℝ. (6.29)

Note that we chose to truncate ̂𝑡(⋅), so that | ̃𝑡(⋅)| ≤ 𝐶𝑛. We can now state the main result on
the risk consistency of ̃𝑡.
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Theorem 6.1 (Brown and Greenshtein (2009)). Consider a triangular array with Θ𝑛, as
above, and sequences 𝜽 ≡ 𝜽𝑛 ∈ Θ𝑛 satisfying Eq. 6.28. Let 𝑣 ≡ 𝑣𝑛 = 1 + ℎ2

𝑛 → 1 as 𝑛 → ∞
(𝑣𝑛 > 1 for every 𝑛), be any sequence such that:

i. ℎ2
𝑛 log𝑛 = 𝑜(1);

ii. ℎ2
𝑛𝑛𝜖′ → ∞ as 𝑛 → ∞, for every 𝜖′ > 0

Assume that, for some 𝜖 > 0 and 𝑛0,

𝑅(𝚫(𝐙|𝑡∗
𝜽), 𝜽)) > 𝑛𝜖, for 𝑛 ≥ 𝑛0. (6.30)

Then,

lim sup
𝑛→∞

𝑅(𝚫(𝐙| ̃𝑡), 𝜽)
𝑅(𝚫(𝐙|𝑡∗

𝜽), 𝜽) = 1. (6.31)

Remark (On the conditions in the theorem). Theorem 6.1} states that, in situations which are
not too advantageous for the oracle so that its risk is of an order larger than 𝑛𝜖 for some 𝜖 > 0,
we may asymptotically do as well as the oracle by letting 𝑣 ≡ 𝑣𝑛 approach 1 in the right way.
Doing as well as the oracle means that the ratio of the risks approaches 1. Note that some
condition resembling Eq. 6.30 is needed; if, for example, 𝜽 = (0, … , 0) ∈ ℝ𝑛, 𝑛 = 1, 2, …, then
the corresponding risk of the oracle is identically 0, and we can obviously not achieve such a
risk by our estimator.

Note that condition (𝑖) above means that ℎ𝑛 must go to zero as 𝑛 → ∞. But condition (𝑖𝑖)
makes sure that ℎ𝑛 cannot go to zero fast; in fact it must converge to 0 very slowly (e.g.,
ℎ𝑛 = (log𝑛)−𝛼 where 𝛼 > 1/2).

Proof. We do not give a complete proof of the result here but just indicate the general idea;
see Brown and Greenshtein (2009) for the proof. The proof is divided into the two following
steps.

Step 1: It can be shown that under assumption (𝑖) we have (see [Brown and Greenshtein
(2009); Lemma 2])

lim
𝑛→∞

𝑅(𝚫(𝐙|𝑡∗
𝜽), 𝜽)

𝑅(𝚫(𝐙|𝑡∗
𝜽,𝑣), 𝜽) = lim

𝑛→∞

𝔼𝜽 [∑𝑛
𝑖=1 (𝑡∗

𝜽(𝑍𝑖) − 𝜃𝑖)
2]

𝔼𝜽 [∑𝑛
𝑖=1 (𝑡∗

𝜽,𝑣(𝑍𝑖) − 𝜃𝑖)
2]

= 1.

Step 2: It can be shown that for any 𝜖″ > 0 (arbitrarily small), under assumption (𝑖𝑖), we have

𝔼𝜽 [
𝑛

∑
𝑖=1

(𝑡∗
𝜽,𝑣(𝑍𝑖) − ̃𝑡(𝑍𝑖))

2] = 𝑜(𝑛𝜖″);

see Lemma 3 in Brown and Greenshtein (2009).
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Then, we can write 𝑅(𝚫(𝐙| ̃𝑡), 𝜽) as

𝔼𝜽 [
𝑛

∑
𝑖=1

( ̃𝑡(𝑍𝑖) − 𝜃𝑖)
2]

≤ (1 + 1
𝜂) 𝔼𝜽 [

𝑛
∑
𝑖=1

(𝑡∗
𝜽,𝑣(𝑍𝑖) − ̃𝑡(𝑍𝑖))

2] + (1 + 𝜂) 𝔼𝜽 [
𝑛

∑
𝑖=1

(𝑡∗
𝜽,𝑣(𝑍𝑖) − 𝜃𝑖)

2]

= (1 + 1
𝜂)𝑜(𝑛𝜖″) + (1 + 𝜂) {1 + 𝑜(1)} 𝔼𝜽 [

𝑛
∑
𝑖=1

(𝑡∗
𝜽(𝑍𝑖) − 𝜃𝑖)

2]

for every 𝜂 > 0. for every 𝜂 > 0. As 𝑡∗
𝜽 minimizes the risk Eq. 6.17, we have

1 ≤
𝔼𝜽 [∑𝑛

𝑖=1 ( ̃𝑡(𝑍𝑖) − 𝜃𝑖)
2]

𝔼𝜽 [∑𝑛
𝑖=1 (𝑡∗

𝜽(𝑍𝑖) − 𝜃𝑖)
2]

≤ (1 + 1
𝜂)𝑜(𝑛𝜖″−𝜖) + (1 + 𝜂) {1 + 𝑜(1)}.

As 𝜖″ can be chosen to be smaller than 𝜖 (recall assumption Eq. 6.30), we have

1 ≤ lim sup
𝑛→∞

𝑅(𝚫(𝐙| ̃𝑡), 𝜽)
𝑅(𝚫(𝐙|𝑡∗

𝜽), 𝜽) ≤ 1 + 𝜂.

As 𝜂 > 0 is arbitrary, we have the desired result.
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7 G-modeling

In this section we study the 𝐺-modeling approach to empirical Bayes estimation. Here the
idea is to directly estimate the prior 𝐺 from the data first and then apply the learned Bayes
rule. Recall, that in the Bayesian setting, our goal is to “estimate” the random parameter 𝑀𝑖
based on 𝐙 = (𝑍1, … , 𝑍𝑛) where:

𝑀𝑖
𝑖𝑖𝑑∼ 𝐺, 𝑍𝑖 ∣ 𝑀𝑖 = 𝜃 𝑖𝑛𝑑∼ 𝑝(⋅ ∣ 𝜃), (7.1)

and 𝐺 is the unknown prior distribution supported on Θ ⊂ ℝ.
Here, the target is the Bayes procedure 𝑡𝐺 — the estimator that minimizes the Bayes risk
under 𝐺.

7.1 General maximum likelihood empirical Bayes (GMLEB)

The first task in 𝐺-modeling is to estimate 𝐺 directly from the data 𝐙. In this chapter we will
consider using the nonparametric maximum likelihood estimator (NPMLE) of 𝐺 to accomplish
this task; cf. Section 1.4.2 in Chapter 1 where we minimized an appropriate Kolmogorov-
Smirnov distance to obtain an estimator of 𝐺.

The NPMLE is any 𝐺𝑛 ∈ 𝒫(Θ)—the class of all Borel probability distributions on Θ—that
maximizes the marginal likelihood of the observations 𝐙 drawn from Eq. 7.1. Note that
marginally, the observations are i.i.d., and the 𝑖th observation 𝑍𝑖 is distributed according to
the mixture model with density

𝑓𝐺(𝑧) ∶= ∫ 𝑝(𝑧 ∣ 𝜃) 𝑑𝐺(𝜃), for 𝑧 ∈ ℝ. (7.2)

Formally, an NPMLE is any maximizer

𝐺𝑛 ∈ argmax
𝐺∈𝒫(Θ)

𝑛
∑
𝑖=1

log 𝑓𝐺(𝑍𝑖). (7.3)

The idea of finding the NPMLE of a latent distribution is an old one. The idea was suggested
in an abstract by Robbins (1950) (also see Robbins (1951)), and later received substantial
theoretical development by Kiefer and Wolfowitz (1956). In Section 7.2 we provide some basic

100



characterizations/properties of the NPMLE 𝐺𝑛 in Eq. 7.3, where we maximize the (marginal)
log-likelihood over the infinite dimensional space of all distributions.

Jiang and Zhang (2009) proposed the general maximum likelihood EB (GMLEB) method in
which one first estimates 𝐺 by the NPMLE 𝐺𝑛 and then one plugs this estimator into the
oracle general EB rule 𝑡𝐺, i.e., one replaces the unknown prior 𝐺 in the oracle Bayes rule 𝑡𝐺
by 𝐺𝑛. Thus, the GMLEB estimates the unobserved latent variable 𝑀𝑖 by

̂𝜃𝑖 = 𝑡𝐺𝑛
(𝑍𝑖), for 𝑖 = 1, … , 𝑛. (7.4)

Clearly, the GMLEB estimator is completely nonparametric and does not require any restric-
tion, regularization, bandwidth selection or other forms of tuning. Further, the GMLEB
procedure is applicable to any model of the form Eq. 7.1 and any Bayes decision 𝑡𝐺; compare
this with the 𝐹 -modeling approach which can be quite restrictive as it crucially needs Tweedie-
type formulas to express posterior quantities (e.g., posterior mean) in terms of the marginal 𝑓𝐺.
The GMLEB is also appealing since the function 𝑡𝐺𝑛

(⋅) enjoys all analytical properties of the
Bayes rule; e.g., in the normal means problem under squared error loss, 𝑡𝐺𝑛

(⋅) is monotonic,
infinitely differentiable and more.

Further, the theoretical results of Jiang and Zhang (2009), in the normal means problem,
affirmed that by aiming at the minimum risk of all separable estimators, this greedier general
EB approach realizes significant risk reduction over linear (and threshold methods) for a wide
range of the unknown signal vectors for moderate and large samples. The authors prove
that the risk of the GMLEB estimator is within an infinitesimal fraction of the general EB
benchmark when the risk is of the order 𝑛−1(log𝑛)5 or greater, depending on the magnitude
of the unknown means (see Theorem 7.3 in Section 7.4).

7.2 Characterization and basic properties of the NPMLE

In this section, we establish some basic properties of solutions to the nonparametric maximum
likelihood problem Eq. 7.3, including: (i) existence, (ii) uniqueness, (iii) discreteness of solu-
tions 𝐺𝑛, and (iv) bounds on the support of 𝐺𝑛. These results provide a foundation both for
computing 𝐺𝑛 (Section 7.3) and for understanding its statistical properties (Section 7.4). Our
treatment here is adopted from B. G. Lindsay (1995); see e.g.,Theorems 18-21.

Before starting the formal result, let us briefly discuss the main ideas in studying the solution(s)
of Eq. 7.3. We first introduce some notation. Let 𝑚 denote the number of distinct values in
the set {𝑍1, … , 𝑍𝑛}, and let the distinct values be denoted as 𝑦1 < … < 𝑦𝑚. Let 𝑛𝑗 ∶= #{𝑖 ∶
𝑍𝑖 = 𝑦𝑗}, for 1 ≤ 𝑗 ≤ 𝑚, denote the number of observations 𝑍𝑖 that are equal to 𝑦𝑗. Then,
problem Eq. 7.3 can be thought of as maximizing the objective function

ℓ(𝐺) ∶=
𝑚

∑
𝑗=1

𝑛𝑗 log 𝑓𝐺(𝑦𝑗), (7.5)
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over the class of all probability distributions 𝐺 on Θ ⊂ ℝ, where 𝑓𝐺 is as defined in Eq. 7.2.

Reformulating the problem. The key to putting this problem into a standard optimization
framework is to recognize that the objective function ℓ(𝐺) above depends directly on the
possible values of the mixture likelihood vector

𝐋(𝐺) ∶= (𝑓𝐺(𝑦1), … , 𝑓𝐺(𝑦𝑚)) ∈ ℝ𝑚.

We change our perspective on this problem from maximizing the log-likelihood Eq. 7.5 over all
latent distributions 𝐺 into the problem of determining which of the eligible classes of mixture
likelihood vectors 𝐋(𝐺) gives the largest value to the log-likelihood.

Step 1. Construct the feasible region of ℝ𝑚. It will be the set of all possible fitted values of
the likelihood vector:

ℳ ∶= {𝐋(𝐺) = (𝑓𝐺(𝑦1), … , 𝑓𝐺(𝑦𝑚)) ∶ 𝐺 is a probability distribution} ⊂ [0, ∞)𝑚.

First, note that ℳ is a convex set in ℝ𝑚. As we shall see, this together with the concavity of
the objective function ℓ(𝐺), ensures that Eq. 7.3 is in a class of nice optimization problems.

Step 2. We can now redefine the maximization problem:

max
𝐩∈ℳ

𝑚
∑
𝑖=1

𝑛𝑗 log 𝑝𝑗 =∶ ℓ(𝐩) (7.6)

where the objective function here is ℓ(𝐩)—a strictly concave function on the positive orthant.1
Thus, under appropriate conditions, we can expect a unique maximizer 𝐩̂ ∈ ℳ.

Step 3. Solve for the NPMLE 𝐺𝑛 by solving from the known 𝐩̂ for the latent distribution 𝐺𝑛
via the 𝑚 equations

𝐋(𝐺𝑛) = 𝐩̂.

The following result is from B. G. Lindsay (1995) (also see Bruce G. Lindsay (1983)).

Theorem 7.1 (Existence and support size). Suppose that: (i) 𝑝(𝑧 ∣ 𝜃) is a continuous function
in 𝜃 and lim|𝜃|→∞ 𝑝(𝑧 ∣ 𝜃) = 0, for every 𝑧 ∈ ℝ, (ii) 𝑝(⋅ ∣ ⋅) is upper bounded, and (iii) ℳ
contains at least one point with positive likelihood.2 Then there exists unique 𝐩̂ ∈ 𝜕ℳ, the
boundary of ℳ, such that 𝐩̂ maximizes ℓ(𝐩) (see Eq. 7.6) over ℳ. Further, the point 𝐩̂ can
be expressed as (𝑓𝐺𝑛

(𝑦1), … , 𝑓𝐺𝑛
(𝑦𝑚)) where 𝐺𝑛 has 𝑚 or fewer points of support.

1Exercise: Show this.
2If no point in ℳ has positive likelihood, then the uniqueness of the maximum must fail, because then all

elements have likelihood zero.
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Proof. Consider the following set where 𝐺 varies over all sub-probability distributions 3:

ℳs𝑢𝑏 ∶= {𝐋(𝐺) = (𝑓𝐺(𝑦1), … , 𝑓𝐺(𝑦𝑚)) ∶ 𝐺 is a sub-probability distribution} ⊇ ℳ.

Moreover, if 𝑝(⋅ ∣ ⋅) is upper bounded, then ℳs𝑢𝑏 is a compact set.4

Let 𝐩0 ∈ ℳ be one point with positive likelihood as stated in the assumption), and say
ℓ(𝐩0) = 𝑐0 > −∞. Then the set

ℒ ∶= {𝐩 ∈ ℳs𝑢𝑏 ∶ ℓ(𝐩) ≥ 𝑐0} ⊂ ℳs𝑢𝑏

is compact5 (i.e., closed and bounded). Note that ℓ(⋅) is a continuous function on the compact
set ℒ, and hence attains its maximum on ℒ. Further, max𝐩∈ℳs𝑢𝑏

ℓ(𝐩) = max𝐩∈ℒ ℓ(𝐩).
We next show that any maximizer 𝐩̂ = (𝑓𝐺(𝑦1), … , 𝑓𝐺(𝑦𝑚)) of ℓ(⋅) over ℳs𝑢𝑏 must lie in ℳ.
Suppose not, i.e., suppose that 𝐺 is not a proper probability distribution (i.e., 0 < 𝐺(Θ) < 1).
Define ̃𝐺(𝐴) ∶= 𝐺(𝐴)/𝐺(Θ), for any Borel 𝐴 ⊂ Θ. Then ̃𝐺 is a valid probability distribu-
tion and 𝑞𝑗 ∶= 𝑓 ̃𝐺(𝑦𝑗) = 𝑓𝐺(𝑦𝑗)/𝐺(Θ), for all 𝑗 = 1, … , 𝑚. Moreover as the function log is
strictly increasing, ℓ(𝑞1, … , 𝑞𝑚) > ℓ(𝐩̂), yielding a contradiction. Therefore, max𝐩∈ℳs𝑢𝑏

ℓ(𝐩) =
max𝐩∈ℳ ℓ(𝐩) = ℓ(𝐩̂), thereby showing the existence of a maximizer 𝐩̂ of the objective ℓ(⋅) over
ℳ.

Further, as ℳ is convex, and the objective function ℓ(⋅) is strictly concave, it takes on a unique
maximum value.

To see this, suppose that ℓ(⋅) does not have a unique maximum over ℳ. Then there exists
𝝅̂1 ≠ 𝝅̂2 ∈ ℳ such that

ℓ(𝝅̂1) = ℓ(𝝅̂2) = max
𝐩∈ℳ

ℓ(𝐩).

Define 𝝅̂ ∶= (𝝅̂1 + 𝝅̂2)/2. Then 𝝅̂ ∈ 𝑀 , as ℳ is a convex set, and by the strictly concavity of
ℓ(⋅) we get

ℓ(𝝅̂) > 1
2𝑓(𝝅̂1) + 1

2𝑓(𝝅̂2) = max
𝐩∈ℳ

ℓ(𝐩),

which is a contradiction. Thus, ℓ(⋅) has a unique maximum over ℳ.

Further, as ℓ(⋅) is a strictly coordinate-wise increasing function, this unique maximum value
𝐩̂ has to be at the boundary of ℳ (otherwise we could increase the objective value ℓ(𝐩̂) to
ℓ(𝐩̂ + 𝜖1𝑚) for some small enough 𝜖 > 0).
The last part of the result follows from Carathéodory’s theorem for convex sets:

Theorem (Carathéodory): Let 𝑆 be a set in the 𝑚-dimensional Euclidean space ℝ𝑚. Every
element 𝑥 ∈ conv(𝑆) can be expressed as a convex combination of at most 𝑚 + 1 elements of
𝑆. If 𝑥 is in the boundary of conv(𝑆), then 𝑚 + 1 can be replaced by 𝑚.

3Thus 𝐺 is a measure with total mass at most 1.
4Exercise: Show this.
5Exercise:Show this
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Remark (On the assumptions of Theorem 7.1). The requirement that the set ℒ be closed is
more of a technical requirement to make the theory simple6 (note that the boundedness of
the curve ℒ is essential, because if the likelihood vectors have unbounded components, then
one can construct unbounded likelihoods). There will be cases, such as the normal location
mixture example, where the parameter 𝜃 can vary over the entire ℝ. To ensure closedness of ℒ,
we must include the left- and right-hand limits; in the normal example, the likelihood vector
𝐋𝜃 converges to 𝟎 ∈ ℝ𝑚 in both directions, as 𝜃 → ±∞. We can include this limit point in the
set ℒ without real consequence because it can never appear in the maximizing mixture.7

Existence and discreteness. The first statement of Theorem 7.1 guarantees the existence
of a solution; in particular, the existence of a discrete 𝐺𝑛 with no more than 𝑚 support
points—the number of distinct data points 𝑍1, … , 𝑍𝑛. Thus we typically write:

𝐺𝑛 =
𝑘̂

∑
𝑗=1

𝑤̂𝑗𝛿𝑎̂𝑗
where 𝑤̂𝑗 ≥ 0,

𝑘̂
∑
𝑗=1

𝑤̂𝑗 = 1 and ̂𝑎𝑗 ∈ Θ, (7.7)

with 𝑘̂ ≤ 𝑚 providing an upper bound on the complexity of at least one solution.8 This implies
that 𝐺𝑛 may be taken to be the maximum likelihood solution to a 𝑘̂-component mixture model
where 𝑘̂ is selected in a data dependent manner. Since finite mixture models are nested by
the number of components and 𝑘̂ ≤ 𝑚, we may also say in general that 𝐺𝑛 is the maximum
likelihood solution to an 𝑚-component mixture model.

However, in practice, the number of components 𝑘̂ is typically much smaller than 𝑚. For in-
stance, in the univariate Gaussian location mixture model Polyanskiy and Wu (2020) establish
a much stronger bound of 𝑘̂ = 𝑂𝑃 (log𝑛) under certain conditions on the prior distribution
𝐺.

Remark (On the uniqueness of 𝐺𝑛). We note that while the uniqueness of 𝐩̂ is guaranteed by
the above lemma, there may be more than one 𝐺𝑛 which satisfies 𝐋(𝐺𝑛) = 𝐩̂. The uniqueness
of 𝐺𝑛 is a more delicate issue. For example, it is known that in the univariate normal location

6If ℒ is not closed, the theorem can be applied to the closure; one must then determine if the limit points
show up in the maximizing mixture and, if so, how to interpret them.

7Define ℳ ∶= {(𝑓𝐺(𝑦𝑗))𝑚
𝑗=1 ∶ 𝐺 ∈ 𝒫(Θ)} ∪ {𝟎}. Observe that

ℳ = conv (ℒ) , where ℒ ∶= {(𝑝(𝑦𝑗 ∣ 𝜗))𝑚
𝑗=1 ∶ 𝜗 ∈ ℝ} ∪ {𝟎}.

Since 𝜗 ↦ (𝑝(𝑦𝑗 ∣ 𝜗))𝑚
𝑗=1 is continuous and lim|𝜗|→∞(𝑝(𝑦𝑗 ∣ 𝜗))𝑚

𝑗=1 = 𝟎, the set ℒ is closed, and by
boundedness of the Gaussian likelihood, ℒ is compact. Hence ℳ ⊂ ℝ𝑚 is convex and compact, and
ℓ(𝐩) ∶= ∑𝑚

𝑗=1 𝑛𝑗 log 𝑝𝑖 is strictly concave over ℳ.
8The bound 𝑘̂ ≤ 𝑚 is tight: for each 𝑚 ≥ 1, there are sequences of observations (𝑦𝑗)𝑚

𝑗=1 such that the smallest
number of components 𝑘̂ of any solution to Eq. 7.3 is precisely 𝑚, see e.g., p. 116 in B. G. Lindsay (1995).
In particular, in a normal location mixture model, one can construct sets of data for which the bound 𝑚 is
attained simply by spreading the observations far apart.
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mixture model, the uniqueness holds; see Bruce G. Lindsay (1983) and Bruce G. Lindsay and
Roeder (1993). However, it does not hold true for the multivariate version of the problem; see
e.g., Soloff, Guntuboyina, and Sen (2021). We will come back to this later, if time permits.

Gradient characterization. Next we consider a way of characterizing whether a given latent
distribution, say 𝐺0, is the NPMLE.

To do this we form a path in the space of distributions from 𝐺0 to any other distribution,
say 𝐺1, by letting 𝐺𝛼 ∶= (1 − 𝛼)𝐺0 + 𝛼𝐺1, for 𝛼 ∈ [0, 1]. For every 𝛼, this generates an
intermediate distribution, with 𝛼 = 0 and 1 corresponding to the original two distributions of
interest.

Next, we compute the log-likelihood along this path, obtaining a one parameter log-likelihood
function

ℓ(𝛼) ∶=
𝑚

∑
𝑗=1

𝑛𝑗 log 𝑓𝐺𝛼
(𝑦𝑗).

The derivative of ℓ(𝛼) at 𝛼 = 0 is the directional derivative corresponding to this path from
𝐺0 to 𝐺1 and it has the simple form

𝐷(𝐺0, 𝐺1) ∶= 𝜕ℓ(𝛼)
𝜕𝛼 ∣

𝛼=0
= lim

𝛼↓0

∑𝑚
𝑗=1 𝑛𝑗[log 𝑓(1−𝛼)𝐺0+𝛼𝐺1

(𝑦𝑗) − log 𝑓𝐺0
(𝑦𝑗)]

𝛼

=
𝑚

∑
𝑗=1

𝑛𝑗 lim
𝛼↓0

[log 𝑓(1−𝛼)𝐺0+𝛼𝐺1
(𝑦𝑗) − log 𝑓𝐺0

(𝑦𝑗)]
𝛼

=
𝑚

∑
𝑗=1

𝑛𝑗
𝑓𝐺0

(𝑦𝑗)
∫ 𝑝(𝑦𝑗 ∣ 𝜃) 𝑑(𝐺1 − 𝐺0)(𝜃)

=
𝑚

∑
𝑖=1

𝑛𝑗 {
𝑓𝐺1

(𝑦𝑗)
𝑓𝐺0

(𝑦𝑗)
− 1}

where we note that

𝑓(1−𝛼)𝐺0+𝛼𝐺1
(𝑦𝑗) = 𝑓𝐺0

(𝑦𝑗) + 𝛼 ∫ 𝑝(𝑦𝑗 ∣ 𝜃) 𝑑(𝐺1 − 𝐺0)(𝜃)

and we have used the fact that lim𝛽↓0
log(𝑥+𝛽)−log 𝑥

𝛽 = 1
𝑥 .

Next, it is clear that if the gradient function 𝐷(𝐺0, 𝐺1) takes on positive values at any 𝐺1,
then the likelihood along the path from 𝐺0 in the direction of 𝐺1 is increasing at 𝐺0, so that
𝐺0 cannot be the NPMLE.

Theorem 7.2. 𝐺𝑛 ∈ 𝒫(Θ) solves Eq. 7.3 if and only if

𝐷(𝐺𝑛, 𝜗) ≤ 0 for all 𝜗 ∈ Θ, where 𝐷(𝐺, 𝜗) ∶=
𝑚

∑
𝑗=1

𝑛𝑗 {𝑝(𝑦𝑗 ∣ 𝜗)
𝑓𝐺(𝑦𝑗)

− 1} . (7.8)
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Further, the support of any NPMLE 𝐺𝑛 is contained in the zero set Θ0 ∶= {𝜗 ∈ Θ ∶ 𝐷(𝐺𝑛, 𝜗) =
0}.

Proof. The following uses similar techniques as Section 5.2 of B. G. Lindsay (1995). By
convexity, the first-order optimality condition for 𝐺𝑛 is

𝐷(𝐺𝑛, 𝐺) ≤ 0 for all 𝐺 ∈ 𝒫(Θ) (7.9)

where

𝐷(𝐺𝑛, 𝐺) ∶= lim
𝛼↓0

∑𝑚
𝑗=1 𝑛𝑗[log 𝑓(1−𝛼)𝐺𝑛+𝛼𝐺(𝑦𝑗) − log 𝑓𝐺𝑛

(𝑦𝑗)]
𝛼

=
𝑚

∑
𝑗=1

𝑛𝑗
𝑓𝐺𝑛

(𝑦𝑗)
(𝑓𝐺(𝑦𝑗) − 𝑓𝐺𝑛

(𝑦𝑗)) =
𝑚

∑
𝑗=1

𝑛𝑗 { 𝑓𝐺(𝑦𝑗)
𝑓𝐺𝑛

(𝑦𝑗)
− 1} .

When 𝐺 = 𝛿𝜗 is a point mass we write 𝐷(𝐺𝑛, 𝜗) instead of 𝐷(𝐺𝑛, 𝐺). It suffices to check
𝐷(𝐺𝑛, 𝜗) ≤ 0 for all 𝜗 ∈ ℝ because 𝐷(𝐺𝑛, 𝐺) = ∫ 𝐷(𝐺𝑛, 𝜗) 𝑑𝐺[𝜗].

Note that from Eq. 7.8 we obviously have, by integrating, ∫ 𝐷(𝐺𝑛, 𝜃) 𝑑𝐺𝑛(𝜃) ≤ 0. However,

∫ 𝐷(𝐺𝑛, 𝜃) 𝑑𝐺𝑛(𝜃) =
𝑚

∑
𝑗=1

𝑛𝑗 {∫ 𝑝(𝑦𝑗 ∣ 𝜃) 𝑑(𝜃)
𝑓𝐺(𝑦𝑗)

− 1} = 0.

Thus, letting ̂𝜃𝑛 ∼ 𝐺𝑛, the random variable 𝐷(𝐺𝑛, ̂𝜃𝑛) ≤ 0 but 𝔼 [𝐷(𝐺𝑛, ̂𝜃𝑛) ∣ 𝐺𝑛] = 0.
Therefore, 𝐷(𝐺𝑛, ̂𝜃𝑛) = 0 a.s., and hence the support of any NPMLE 𝐺𝑛 is contained in the
zero set Θ0 ∶= {𝜗 ∈ Θ ∶ 𝐷(𝐺𝑛, 𝜗) = 0}.

Support point properties. The second part of the lemma characterizes the location of the
support points ̂𝑎𝑗 of 𝐺𝑛. The result is that if 𝜉 is a support point for any NPMLE 𝐺𝑛, then
𝐷(𝐺𝑛, 𝜉) ≡ 𝐷(𝐺𝑛, 𝛿𝜉) = 0. Together with the gradient inequality in Eq. 7.8 this implies that
the support points will be local maxima of the gradient function 𝐷(𝐺𝑛, 𝜗).9 This result is also
very useful in proofs of the uniqueness of the NPMLE 𝐺𝑛.

7.3 Computation

Since the NPMLE 𝐺𝑛 is completely nonparametric, the support points {𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑘̂} and
weights {𝑤𝑗, 1 ≤ 𝑗 ≤ 𝑘̂} in Eq. 7.7 are selected (or computed) solely to maximize the log-
likelihood in Eq. 7.5. There are quite a few possible algorithms for solving Eq. 7.3 to compute

9One of the consequences of this result is that a gradient-based algorithm need not keep track of the support
points in 𝐺𝑛 because they can be recovered from the gradient function at the end of the algorithm.
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the NPMLE 𝐺𝑛. The most classical approach to solving Eq. 7.3 is to use the expectation-
maximization (EM) algorithm; see N. Laird (1978). However, different EM-initializations can
lead to different versions of 𝐺𝑛, which can then result in different values of 𝑡𝐺𝑛

(𝑍𝑖). Further,
the EM may converge very slowly as is well-documented in the literature; see e.g.,Koenker and
Mizera (2014).

As the “nonparametric” domain (or constraint set) 𝒫(Θ) is convex and the objective ℓ(𝐺)
is concave, the NPMLE 𝐺𝑛 solves a convex optimization problem, and tools from convex
optimization may be leveraged to find principled approximations10 to 𝐺𝑛. See Böhning (1999)
for a book length treatment of different computational algorithms that can be used to solve
Eq. 7.3.

A natural strategy, that has become quite popular in the last decade (advocated by Koenker
and Mizera (2014)), is to discretize the space Θ (or a subset thereof) where 𝐺𝑛 can put
mass.11 For example, we can consider an appropriate compact interval and fix an equispaced
grid 𝑐1 < 𝑐2 < … < 𝑐𝑁 in this interval, for some 𝑁 ≥ 1. We can then maximize the marginal
log-likelihood over all distributions supported on the aforementioned grid, which leads to the
following finite-dimensional convex optimization problem:

max
(𝜋1,…,𝜋𝑁)∈ℝ𝑁

𝑚
∑
𝑗=1

𝑛𝑗 log(
𝑁

∑
𝑖=1

𝐿𝑗𝑖𝜋𝑖) s.t. 𝜋𝑖 ≥ 0, ∀ 𝑖 = 1, … , 𝑁,
𝑁

∑
𝑖=1

𝜋𝑖 = 1, (7.10)

where 𝐿𝑗𝑖 ∶= 𝑝(𝑦𝑗 ∣ 𝑐𝑖), for all 𝑖, 𝑗; here 𝝅 = (𝜋1, … , 𝜋𝑁), belonging to the probability simplex in
ℝ𝑁 , is the variable of interest. In particular, Koenker and Mizera (2014) proposed solving the
dual formulation of Eq. 7.10 using off-the-shelf interior point based solvers. In fact, the routine
KWDual in the R package REBayes (Koenker and Gu 2017) adopts the commercial interior point
solver Mosek to solve the dual of Eq. 7.10. Compared to the EM, modern convex optimization
methods can be more efficient and stable. See Kim, Carbonetto, Stephens, and Anitescu (2020)
and Y. Zhang, Cui, Sen, and Toh (2022) for some recent algorithms that can solve Eq. 7.10
for larger sample sizes (e.g., 𝑚 ≈ 106). It can be shown that as the grid becomes more dense,
the NPMLE 𝐺𝑛 computed from these discrete approximations converge to a solution of the
infinite dimensional problem Eq. 7.3; we refer to Soloff, Guntuboyina, and Sen (2021) for an
analysis that quantify the discretization error in the normal location mixture model.

7.4 Theoretical Properties

In this section we study some of the optimality properties of the GMLEB procedure. We focus
on the Gaussian sequence model in the compound setting (under quadratic loss), where we

10As the set 𝒫(Θ) is infinite-dimensional, we need to approximate it by a finite-dimensional set.
11For example, it can be shown that the 𝐺𝑛 in the Gaussian location mixture only puts mass on points between

the minimum and maximum of the observations.
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observe
𝑍𝑖

𝑖𝑛𝑑∼ 𝑁(𝜃𝑖, 1), for 𝑖 = 1, … , 𝑛,
and the unknown parameter is 𝜽 = (𝜃1, … , 𝜃𝑛) ∈ ℝ𝑛. From the fundamental theorem of
compound decisions, we have (recall that 𝐺𝑛 = 1

𝑛 ∑𝑛
𝑖=1 𝛿𝜃𝑖

)

𝑅∗(𝐺𝑛) ∶= 𝔼𝐺𝑛
[(𝑡𝐺𝑛

(𝑍) − 𝑀)2] = 𝔼𝜽 [ 1
𝑛

𝑛
∑
𝑖=1

(𝑡∗
𝜽(𝑍𝑖) − 𝜃𝑖)2] = min

𝑡(⋅)
𝔼𝜽 [ 1

𝑛
𝑛

∑
𝑖=1

(𝑡(𝑍𝑖) − 𝜃𝑖)2] .

Thus, the best separable estimator 𝑡(⋅) minimizes the Bayes risk under prior 𝐺𝑛. The general
EB approach seeks procedures which approximate this Bayes rule 𝑡∗

𝜽(⋅) ≡ 𝑡𝐺𝑛
(⋅) or approx-

imately achieve the risk benchmark 𝑅∗(𝐺𝑛) above. Further, the Bayes rule 𝑡∗
𝜽 provides a

natural benchmark against which we can compare the performance of the GMLEB estimator
𝑡𝐺𝑛

(⋅).
There are at least three ways of quantifying the performance of the GMLEB method:

(1) We can study the risk behavior of the estimated Bayes procedure 𝑡𝐺𝑛
, and compare it

to the Bayes optimal procedure 𝑡∗
𝜽.

(2) The NPMLE 𝐺𝑛 immediately yields an estimator of the average mixing density12 𝑓𝐺𝑛
,

namely 𝑓𝐺𝑛
; we can quantify this estimation accuracy.

(3) In the compound setting the NPMLE 𝐺𝑛 can be thought of as estimating the unknown
𝐺𝑛. We can quantify the accuracy of this estimator directly.

We first discuss 1. above, i.e., the performance of 𝑡𝐺𝑛
in estimating 𝑡∗

𝜽. Jiang and Zhang
(2009) has a comprehensive study of this problem under various assumptions on 𝐺𝑛, e.g., 𝐺𝑛
is light-tailed, heavy-tailed, or sparse.13 The following is one such result; its proof is quite
involved and we skip it here (also see Saha and Guntuboyina (2020) for similar results in the
multivariate Gaussian sequence model with detailed proofs).

Theorem 7.3 (Theorem 1 in Jiang and Zhang (2009)). Let 𝐙 ∼ 𝑁(𝜽, 𝐼𝑛) where

𝜽 ∈ Θ𝑛 ∶= {𝜽 = (𝜃1, … , 𝜃𝑛) ∈ ℝ𝑛 ∶ ∃ 𝑏𝑛 s.t. max
1≤𝑖≤𝑛

|𝜃𝑖 − 𝑏𝑛| = 𝑂(√log𝑛)}.

Then,

lim
𝑛→∞

sup
𝜽∈Θ𝑛

𝔼𝜽 [ 1
𝑛 ∑𝑛

𝑖=1(𝑡𝐺𝑛
(𝑍𝑖) − 𝜃𝑖)2]

𝑅∗(𝐺𝑛) ≤ 1,

provided 𝑛𝑅∗(𝐺𝑛)/(log𝑛)5 → ∞.

12See Eq. 7.11 below for more details on this.
13The study of EB methods for sparse priors has received quite a bit of attention mainly because of the

connections to multiple hypothesis testing.
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The above result says that the GMLEB estimator 𝑡𝐺𝑛
has risk which is uniformly close to

the risk of the oracle for a large set of parameter vectors, namely Θ𝑛. Note that although
𝑅∗(𝐺𝑛) ≤ 1, for “sparse” sequences it can be much smaller (close to 0; e.g., for 𝜃1 = … = 𝜃𝑛 =
0). The condition 𝑛𝑅∗(𝐺𝑛)/(log𝑛)5 → ∞ in Theorem 7.3 shows that 𝑡𝐺𝑛

has near optimal
performance for a broad range of “sparse” parameters (as 𝑅∗(𝐺𝑛) can be as small as 1/𝑛, up
to logarithmic factors).

Although the above result showcases the remarkable performance of the GMLEB estimator
𝑡𝐺𝑛

for a broad range of settings, if 𝑅∗(𝐺𝑛) ≈ 𝑂(1), then the above result does not provide
any rates as to how fast the risk of 𝑡𝐺𝑛

approaches that of the oracle 𝑡𝐺𝑛
. To formalize this,

we can study he regret of 𝑡𝐺𝑛
in estimating the general EB oracle rule 𝑡∗

𝐺𝑛
(⋅):

𝑟𝑛,𝜽(𝑡∗
𝐺𝑛

) ∶= 𝔼𝜽 [ 1
𝑛

𝑛
∑
𝑖=1

(𝑡𝐺𝑛
(𝑍𝑖) − 𝜃𝑖)2] − 𝑅∗(𝐺𝑛).

Jiang and Zhang (2009) prove rates for the regret; in particular, it shows almost paramet-
ric rates for the difference between the square roots of the risks above. Also see Saha and
Guntuboyina (2020) for results of a similar flavor.

In regard to point 2 above, in Section 7.4.1 below, we study the accuracy of 𝑓𝐺𝑛
for estimating

𝑓𝐺𝑛
in the Hellinger metric; see C.-H. Zhang (2009) and Saha and Guntuboyina (2020) for

more general results in this direction.

Let us now discuss point 3 above. Results that study the consistency of 𝐺𝑛 (for estimating
𝐺𝑛) date back to the seminal work of Kiefer and Wolfowitz (1956). In Section 7.4.2 below we
state and prove such a result that is applicable for many symmetric location mixtures beyond
the Gaussian model (under the Bayesian setting). In the recent paper Soloff, Guntuboyina,
and Sen (2021), the authors provide finite sample rates for 𝐺𝑛, in the 2-Wasserstein metric.
Direct estimation of 𝐺𝑛 is related to deconvolution problems in statistics where the minimax
convergence rates can be very slow, that is, polynomial in 1/ log𝑛 (see e.g.,C.-H. Zhang (1990),
Fan (1991)). Although this shows that direct estimation of 𝐺𝑛 is a hard problem, the results of
Jiang and Zhang (2009) show that EB estimation (in particular, estimating 𝑡∗

𝜽) is not impacted
by this slow rate.

7.4.1 The Hellinger accuracy of 𝑓𝐺𝑛

Observe that once the NPMLE 𝐺𝑛 is computed, we can also obtain 𝑓𝐺𝑛
— a natural estimator

of the marginal density 𝑓𝐺 in the Bayesian setting. In the compound setting, 𝑓𝐺𝑛
is really

estimating the average mixing density 𝑓𝐺𝑛
. To see this, observe that the expected value of the

log-likelihood is

𝔼𝜽 [ 1
𝑛

𝑛
∑
𝑖=1

log 𝑓𝐺(𝑍𝑖)] = 1
𝑛

𝑛
∑
𝑖=1

∫ log 𝑓𝐺(𝑧)𝜙(𝑧 − 𝜃𝑖) 𝑑𝑧 = ∫ log 𝑓𝐺(𝑧)𝑓𝐺𝑛
(𝑧) 𝑑𝑧 (7.11)
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which is uniquely maximized at 𝑓𝐺 = 𝑓𝐺𝑛
(as the right side of the above display is equivalent

to Kullback-Leibler divergence between 𝑓𝐺 and 𝑓𝐺𝑛
).

The following result quantifies the estimation accuracy of the NPMLE 𝑓𝐺𝑛
as an estimator of

𝑓𝐺𝑛
in the simple setting where the 𝜃𝑖’s lie in a fixed compact interval.

Theorem 7.4. Suppose that 𝐺𝑛 is supported on a compact interval [−𝑅, 𝑅], for all 𝑛 ≥ 1.
Then,14

𝔼 [𝔥2(𝑓𝐺𝑛
, 𝑓𝐺𝑛

)] ≲𝑅
(log𝑛)2

𝑛 ,

where 𝔥2(𝑓1, 𝑓2) ∶= 1
2 ∫(√𝑓1 − √𝑓2)2 is the squared Hellinger distance between the densities

𝑓1 and 𝑓2.

Theorem Theorem 7.4 shows that estimation of 𝑓𝐺𝑛
in the Hellinger distance is a relatively

easy statistical task that may be achieved at the parametric rate 1/√𝑛, up to logarithmic
factors, by the NPMLE 𝑓𝐺𝑛

; see C.-H. Zhang (2009) and Saha and Guntuboyina (2020) for
more results of a similar flavor under less restrictive assumptions on 𝐺𝑛.

Proof. The general theory of the rates of convergence of maximum likelihood estimators from,
say e.g., van der Vaart and Wellner (1996),can be used to bound 𝔥2(𝑓𝐺𝑛

, 𝑓𝐺𝑛
). This general

theory requires bounds on the covering numbers 15 of the underlying class of densities. In our
context, we need to bound covering numbers of the class

ℱ ∶= {𝑓𝐺 ∶ 𝐺 ∈ 𝒫(ℝ)}. (7.12)

Our main covering number result for ℱ is stated next (we do not prove it here).

Lemma 7.1 (Lemma 2 in C.-H. Zhang (2009)). There exists a universal constant 𝐶∗ > 0 such
that, for all 0 < 𝜖 ≤ 1√

2𝜋 and 𝐵 > 0, we have

log𝑁(𝜖, ℱ, ‖ ⋅ ‖∞
𝐵 ) ≤ 𝐶∗(log 𝜖)2 max{ 𝐵

√| log 𝜖|
, 1} .

Here 𝑁(𝜖, ℱ, ‖ ⋅ ‖∞
𝐵 ) is the 𝜖-cover of the set ℱ under the pseudometric ‖ ⋅ ‖∞

𝐵 , where ‖𝑓‖∞
𝐵 ∶=

sup𝑥∈[−𝐵,𝐵] |𝑓(𝑥)|.

We will also make use of the following lemma (proved later).

14By 𝐴 ≲𝑅 𝐵 we mean that there exists a constant 𝐶 = 𝐶(𝑅) that depends only on 𝑅 s.t. 𝐴 ≤ 𝐶 ⋅ 𝐵.
15Covering numbers are formally defined as the number of balls needed to cover the underlying space.
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Lemma 7.2. Let 𝑍𝑖
𝑖𝑛𝑑∼ 𝑁(𝜃𝑖, 1), for 𝑖 = 1, … , 𝑛, where we assume that |𝜃𝑖| ≤ 𝑅 for all 𝑖. For

𝑀 ≥ √8 log𝑛 ≥ 2𝑅, and 0 < 𝜆 ≤ 1, we have, for any 𝑎 ∈ ℝ,

𝔼 ⎡⎢
⎣

(
𝑛

∏
𝑖=1

|𝑎𝑍𝑖|1{|𝑍𝑖|>𝑀})
𝜆
⎤⎥
⎦

≤ exp{|𝑎|𝜆4𝑀𝜆−1
√

2𝜋 } .

For notational simplicity, let us write 𝑓∗ ∶= 𝑓𝐺𝑛
. We will establish a (finite sample) large

deviation inequality of the form: for all 𝑡 ≥ 1 and

𝛾2
𝑛 ∶= 𝐶 (log𝑛)2

𝑛 ,

for some constant 𝐶 > 0 to be chosen later, for all 𝑛 ≥ 𝑛∗,

ℙ [𝔥(𝑓𝐺𝑛
, 𝑓∗) ≥ 𝑡𝛾𝑛] ≤ 3𝑛−𝑡2 . (7.13)

Then, as for any nonnegative r.v. 𝑋 ∼ 𝐹𝑋, 𝔼 [𝑋] = ∫∞
0 (1 − 𝐹𝑋(𝑥)) 𝑑𝑥, we have

1
𝛾2𝑛

𝔼 [𝔥2(𝑓𝐺𝑛
, 𝑓∗)] ≤ 1 + 3 ∫

∞

1
𝑛−𝑢𝑑𝑢 ≤ 1 + 3

𝑛 log𝑛 ≤ 4 (for 𝑛 ≥ 3)

⇒ 𝔼 [𝔥2(𝑓𝐺𝑛
, 𝑓∗)] ≤ 4𝛾2

𝑛.

Therefore, it suffices to just prove Eq. 7.13.

Note that,

ℙ [𝐴𝑛] ∶= ℙ [𝔥(𝑓𝐺𝑛
, 𝑓∗) ≥ 𝑡𝛾𝑛] = ℙ [𝔥(𝑓𝐺𝑛

, 𝑓∗) ≥ 𝑡𝛾𝑛,
𝑛

∏
𝑖=1

𝑓𝐺𝑛
(𝑍𝑖)

𝑓∗(𝑍𝑖)
≥ 1] . (7.14)

Our strategy is as follows. Let 𝑀 ∶= √8 log𝑛. We shall work with the set [−𝐵, 𝐵], where
𝐵 ∶= 𝑅 + 𝑀 , and the pseudometric given by the pseudonorm ‖ ⋅ ‖∞

𝐵 .

Consider the following class of marginal densities:

ℱ(𝑡𝛾𝑛) ∶= {𝑓𝐺 ∶ 𝔥(𝑓𝐺, 𝑓∗) ≥ 𝑡𝛾𝑛} ⊂ ℱ. (7.15)

This is essentially the class of mixture densities in Eq. 7.12 subject to the additional constraint
that their Hellinger distance to 𝑓∗ is sufficiently large. For 𝜖 > 0, let 𝒮 ∶= {𝑓𝑗 ∶ 𝑗 ∈ 𝒥} ⊂ ℱ
(here 𝒥 = {1, … , 𝐽}, 𝐽 = #𝒮) be a proper (‖ ⋅ ‖∞

𝐵 , 𝜖)-cover of ℱ(𝑡𝛾𝑛)16, i.e.,

sup
𝑓∈ℱ(𝑡𝛾𝑛)

inf
1≤𝑗≤𝐽

‖𝑓 − 𝑓𝑗‖𝐵
∞ ≤ 𝜖.

16By “proper cover”, we mean that the centers of the cover are themselves elements of Eq. 7.15.
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Hence, on the event 𝐴𝑛 Eq. 7.14, there must exist ̂𝑗 ∈ 𝒥 such that ‖𝑓 ̂𝑗 − 𝑓𝐺𝑛
‖𝐵

∞ ≤ 𝜖. This
further implies that on 𝐴𝑛:

𝑓𝐺𝑛
(𝑧) ≤ 𝑓 ̂𝑗(𝑧) + 𝜖 ≤ max

𝑗∈𝒥
𝑓𝑗(𝑧) + 𝜖 for all 𝑧 ∈ [−𝐵, 𝐵].

We introduce the following function 𝑣 ≡ 𝑣𝐵 ∶ ℝ → (0, ∞) via:

𝑣(𝑧) ∶= 𝜖 1{|𝑧| ≤ 𝐵} + 𝜖 𝐵2

𝑧2 1{|𝑧| > 𝐵}, for 𝑧 ∈ ℝ.

Notice that by construction

∫
∞

−∞
𝑣(𝑧)𝑑𝑧 = 2𝜖𝐵 + 2𝜖𝐵2

𝐵 = 4𝜖𝐵, (7.16)

and also

𝑓𝐺𝑛
(𝑧) ≤ max

𝑗∈𝒥
{𝑓𝑗(𝑧) + 𝑣(𝑧)} if 𝑧 ∈ [−𝐵, 𝐵], and 𝑓𝐺𝑛

(𝑧) ≤ (2𝜋)−1/2 otherwise.

For any 𝑓𝐺, write:

𝐿𝑛(𝑓𝐺, 𝑓∗) ∶=
𝑛

∏
𝑖=1

𝑓𝐺(𝑍𝑖)
𝑓∗(𝑍𝑖)

.

Since 𝑓𝐺𝑛
is the NPMLE, it must hold that 𝐿𝑛(𝑓𝐺𝑛

, 𝑓∗) ≥ 1. Next, on the event 𝐴𝑛:

𝐿𝑛(𝑓𝐺𝑛
, 𝑓∗) ≤ ∏

𝑖∶|𝑍𝑖|≤𝐵

𝑓 ̂𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)
𝑓∗(𝑍𝑖)

∏
𝑖∶|𝑍𝑖|>𝐵

(2𝜋)−1/2

𝑓∗(𝑍𝑖)

=
𝑛

∏
𝑖=1

𝑓 ̂𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)
𝑓∗(𝑍𝑖)

∏
𝑖∶|𝑍𝑖|>𝐵

(2𝜋)−1/2

𝑓 ̂𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)

≤
𝑛

∏
𝑖=1

𝑓 ̂𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)
𝑓∗(𝑍𝑖)

∏
𝑖∶|𝑍𝑖|>𝐵

(2𝜋)−1/2

𝑣(𝑍𝑖)
.

Observe that, ℙ [𝔥(𝑓𝐺𝑛
, 𝑓∗) ≥ 𝑡𝛾𝑛] now equals

ℙ [𝔥(𝑓𝐺𝑛
, 𝑓∗) ≥ 𝑡𝛾𝑛, 𝐿𝑛(𝑓𝐺𝑛

, 𝑓∗) ≥ 1]

≤ ℙ ⎡⎢
⎣

𝑛
∏
𝑖=1

𝑓 ̂𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)
𝑓∗(𝑍𝑖)

⋅ ⎛⎜
⎝

∏
𝑖∶|𝑍𝑖|>𝐵

(2𝜋)−1/2

𝑣(𝑍𝑖)
⎞⎟
⎠

≥ 1⎤⎥
⎦

≤ ℙ [
𝑛

∏
𝑖=1

𝑓 ̂𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)
𝑓∗(𝑍𝑖)

≥ 𝑒−2𝛾] + ℙ ⎡⎢
⎣

∏
𝑖∶|𝑍𝑖|>𝐵

(2𝜋)−1/2

𝑣(𝑍𝑖)
≥ 𝑒2𝛾⎤⎥

⎦
,

(7.17)
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for some 𝛾 (to be chosen later). Let us first bound the first term in the above display. Observe
that,

ℙ [
𝑛

∏
𝑖=1

𝑓 ̂𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)
𝑓∗(𝑍𝑖)

≥ 𝑒−2𝛾]

≤ 𝐽 max
𝑗∈𝒥

ℙ [
𝑛

∏
𝑖=1

𝑓𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)
𝑓∗(𝑍𝑖)

≥ 𝑒−2𝛾]

= 𝐽 sup
𝑗∈𝒥

ℙ ⎡⎢
⎣

𝑛
∏
𝑖=1

√𝑓𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)
𝑓∗(𝑍𝑖)

≥ 𝑒−𝛾⎤⎥
⎦

≤ 𝐽 sup
𝑗∈𝒥

⎧{
⎨{⎩

𝑒𝛾
𝑛

∏
𝑖=1

𝔼 ⎡⎢
⎣

√𝑓𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)
𝑓∗(𝑍𝑖)

⎤⎥
⎦

⎫}
⎬}⎭

(by Markov’s inequality)

≤ 𝐽𝑒𝛾 sup
𝑗∈𝒥

⎧{
⎨{⎩
exp⎛⎜

⎝

𝑛
∑
𝑖=1

⎧{
⎨{⎩

𝔼 ⎡⎢
⎣

√𝑓𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)
𝑓∗(𝑍𝑖)

⎤⎥
⎦

− 1
⎫}
⎬}⎭

⎞⎟
⎠

⎫}
⎬}⎭

(as 𝑥 ≤ 𝑒𝑥−1)

(∗)= 𝐽𝑒𝛾 sup
𝑗∈𝒥

{exp(𝑛 {∫
∞

−∞
√𝑓𝑗(𝑧) + 𝑣(𝑧)√𝑓∗(𝑧)𝑑𝑧 − 1})}

(∗∗)
≤ 𝐽𝑒𝛾 exp (−𝑛𝔥2(𝑓𝑗, 𝑓∗) + 2𝑛

√
𝜖𝐵)

≤ exp{−𝑛𝑡2𝛾2
𝑛 + 2𝑛

√
𝜖𝐵 + 𝛾 + log 𝐽} .

(7.18)

In (∗) we have used the following argument:

𝑛
∑
𝑖=1

𝔼 ⎡⎢
⎣

√𝑓𝑗(𝑍𝑖) + 𝑣(𝑍𝑖)
𝑓∗(𝑍𝑖)

⎤⎥
⎦

=
𝑛

∑
𝑖=1

∫
∞

−∞
√𝑓𝑗(𝑧) + 𝑣(𝑧)

𝑓∗(𝑧) 𝜙(𝑧 − 𝜃𝑖) 𝑑𝑧

= 𝑛 ∫ √𝑓𝑗(𝑧) + 𝑣(𝑧)
𝑓∗(𝑧) ( 1

𝑛
𝑛

∑
𝑖=1

𝜙(𝑧 − 𝜃𝑖)) 𝑑𝑧

= 𝑛 ∫
∞

0
√𝑓𝑗(𝑧) + 𝑣(𝑧)√𝑓∗(𝑧) 𝑑𝑧.

In (∗∗) we used the following argument (and the fact that
√

𝑎 + 𝑏 ≤ √𝑎 +
√

𝑏 and the Cauchy-
Schwarz inequality and Eq. 7.16):

∫ √𝑓𝑗(𝑧) + 𝑣(𝑧)√𝑓∗(𝑧)𝑑𝑧 − 1 ≤ ∫ (√𝑓𝑗(𝑧)𝑓∗(𝑧) + √𝑣(𝑧)𝑓∗(𝑧)) 𝑑𝑧 − 1

≤ −𝔥2(𝑓𝑗, 𝑓∗) + (∫ 𝑣(𝑧)𝑑𝑧)
1/2

(∫ 𝑓∗(𝑧)𝑑𝑧)
1/2

= −𝔥2(𝑓𝑗, 𝑓∗) + 2
√

𝜖𝐵.
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Let us now bound the second term in Eq. 7.17. By Markov’s inequality, we have

ℙ ⎡⎢
⎣

∏
𝑖∶|𝑍𝑖|>𝐵

(2𝜋)−1/2

𝑣(𝑍𝑖)
≥ 𝑒2𝛾⎤⎥

⎦
≤ exp(− 2𝛾

𝐶 log𝑛) 𝔼 ⎡⎢
⎣

⎛⎜
⎝

∏
𝑖∶|𝑍𝑖|>𝐵

(2𝜋)−1/2

𝑣(𝑍𝑖)
⎞⎟
⎠

1
𝐶 log 𝑛

⎤⎥
⎦

. (7.19)

For 𝑧 ∉ [−𝐵, 𝐵], as 1/𝑣(𝑧) = 𝑧2/(𝜖𝐵2), we can bound the expectation above, using Lemma 7.2
with 𝜆 = 2

𝐶 log 𝑛 and 𝑎 = (2𝜋)−1/4(√𝜖𝐵)−1, as

𝔼 ⎡⎢
⎣

⎛⎜
⎝

∏
𝑖∶|𝑍𝑖|>𝐵

(2𝜋)−1/2

𝑣(𝑍𝑖)
⎞⎟
⎠

1
𝐶 log 𝑛

⎤⎥
⎦

≤𝔼 ⎡⎢
⎣

⎛⎜
⎝

∏
𝑖∶|𝑍𝑖|>𝐵

(2𝜋)−1/4|𝑍𝑖|√𝜖𝐵
⎞⎟
⎠

2
𝐶 log 𝑛

⎤⎥
⎦

≤ exp{4 ((2𝜋)1/4√𝜖)− 2
𝐶 log 𝑛 𝐵−1

√
2𝜋 } .

(7.20)

We are now ready to pick all parameters. We pick 𝜖 = 1/𝑛2 and 𝛾 ∶= 𝑛𝑡2𝛾2
𝑛/2.

Then, by Lemma Lemma 7.1, we get that:

log 𝐽 ≤ 𝐶𝑅(log𝑛)2.

Thus, the first term 𝑃1 in Eq. 7.17 can be upper bounded, for all 𝑡 ≥ 1, by (using Eq. 7.18):

𝑃1 ≤ exp{−𝑛𝑡2𝛾2
𝑛 + 2

√
𝐵 + 𝑛𝑡2𝛾2

𝑛/2 + 𝐶𝑅(log𝑛)2}
≤ exp {−𝐶𝑡2(log𝑛)2/2 + 𝐶′(log𝑛)2𝑡2 + 𝐶𝑅(log𝑛)2𝑡2} = 𝑒−𝑡2(log 𝑛)2 (7.21)

where we have used the facts: (i) 2
√

𝐵 ≤ 𝐶′(log𝑛)2𝑡2, (ii) 𝐶𝑅(log𝑛)2 ≤ 𝐶𝑅(log𝑛)2𝑡2, and (iii)
𝐶 is chosen such that −𝐶/2 + 𝐶′ + 𝐶𝑅 = −1.
Now, the second term 𝑃2 in Eq. 7.17 can be upper bounded, for all 𝑡 ≥ 1, by (using Eq. 7.19
and Eq. 7.20) as

𝑃2 ≤ exp (−𝑡2 log𝑛) exp{4 ((2𝜋)1/4√𝜖)− 2
𝐶 log 𝑛 𝐵−1

√
2𝜋 }

≤ exp(−𝑡2 log𝑛 + 4 (2𝜋) 1
2𝐶 log 𝑛 𝑒−2/𝐶

√
2𝜋√8 log𝑛 ) ≤ 2𝑒−𝑡2 log 𝑛

(7.22)

for 𝑛 large (such that 4 𝑒−2/𝐶 (2𝜋)
1

2𝐶 log 𝑛√
2𝜋√8 log 𝑛 ≤ log 2), where we have used the facts that: (i) 𝑛 2

𝐶 log 𝑛 =
𝑒2/𝐶, (ii) 𝐵 ≥ √8 log𝑛. Then, combining Eq. 7.21 and Eq. 7.22, for 𝑛 sufficiently large,

ℙ [𝐴𝑛] ≤ 𝑒−𝑡2(log 𝑛)2 + 2𝑒−𝑡2 log 𝑛 ≤ 3𝑒−𝑡2 log 𝑛 = 3𝑛−𝑡2 .

This proves the desired result.
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Proof of Lemma 7.2. Observe that

𝔼 ⎡⎢
⎣

(
𝑛

∏
𝑖=1

|𝑎𝑍𝑖|1{|𝑍𝑖|>𝑀})
𝜆
⎤⎥
⎦

=
𝑛

∏
𝑖=1

𝔼 [|𝑎𝑍𝑖|𝜆1{|𝑍𝑖|>𝑀}]

≤
𝑛

∏
𝑖=1

(1 + |𝑎|𝜆𝔼 [|𝑍𝑖|𝜆1{|𝑍𝑖| > 𝑀}])

≤ exp{|𝑎|𝜆𝑛 ∫
|𝑧|>𝑀

|𝑧|𝜆𝑓𝐺𝑛
(𝑧) 𝑑𝑧} ,

where in the last inequality we have used the facts: (i) 1 + 𝑥 ≤ 𝑒𝑥, (ii) for any ℎ(⋅),
∑𝑛

𝑖=1 𝔼 [ℎ(𝑍𝑖)] = 𝑛 ∫ ℎ(𝑧)𝑓𝐺𝑛
(𝑧) 𝑑𝑧. Let 𝑍 ∼ 𝑁(0, 1) be independent of 𝜉 ∼ 𝐺𝑛. Since

𝑍 + 𝜉 ∼ 𝑓𝐺𝑛
, and 𝜆 ≤ 1,

∫
|𝑧|>𝑀

|𝑧|𝜆𝑓𝐺𝑛
(𝑧) 𝑑𝑧 = 𝔼 [|𝑍 + 𝜉|𝜆1{|𝑍 + 𝜉| > 𝑀}]

≤ 𝔼 [|2𝑍|𝜆1{|𝑍| > 𝑀
2 }] + 𝔼 [|2𝜉|𝜆1{|𝜉| > 𝑀

2 }]

≤ 2𝑀𝜆−1𝔼 [|𝑍|1{|𝑍| > 𝑀
2 }]

≤ 4𝑀𝜆−1 ∫
∞

𝑀/2
𝑧𝜙(𝑧) 𝑑𝑧 = 4𝑀𝜆−1 𝑒−𝑀2/8

√
2𝜋 ≤ 4𝑀𝜆−1

𝑛
√

2𝜋

where in the second inequality follows from the facts: (i) |2𝑍|𝜆 ≤ 2|𝑍|𝑀𝜆−1 as 𝜆 ≤ 1 and
|𝑍| > 𝑀

2 , and (ii) that 𝜉 ≤ 𝑀
2 a.s.~(as |𝜃𝑖| ≤ 𝑅, for all 𝑖). As 𝑀 ≥ √8 log𝑛, we have

𝑒−𝑀2/8 ≤ 1
𝑛 .

7.4.2 Consistency of 𝐺𝑛

In this section we assume that Eq. 7.1 holds. In the following result we show that for a
location mixture model with a symmetric kernel, the NPMLE 𝐺𝑛 converges weakly to the
truth 𝐺 a.s. The proof crucially uses the first-order characterization of the NPMLE and mimics
the approach of Groeneboom and Wellner (1992) (Section 4.2) and Jewell (1982). Similar
results can be derived for other nonparametric mixture models (e.g., for scale mixtures) by
appropriately adapting some of the steps in the proof.

Theorem 7.5. Suppose that 𝑝(⋅ ∣ 𝜃) ≡ 𝑝(⋅ − 𝜃) be a location family such that: (i) 𝑝(⋅) is
symmetric about the origin (i.e., 𝑝(𝑧) = 𝑝(−𝑧) for all 𝑧 ∈ ℝ), (ii) 0 < 𝑝(𝑧) ≤ 𝑝max < ∞ for
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all 𝑧 ∈ ℝ and 𝑝(⋅) is uniformly continuous on ℝ, (iii) 𝑝(⋅) is decreasing on [0, ∞), and (iv)
𝑓𝐺 = 𝑓𝐺′ implies that 𝐺 = 𝐺′. Then, w.p. 1,

𝐺𝑛
𝑑→ 𝐺, as 𝑛 → ∞.

Proof. Let 𝐹𝑛 denote the empirical distribution of the observed 𝑍1, … , 𝑍𝑛, i.e., 𝐹𝑛 =
1
𝑛 ∑𝑛

𝑖=1 𝛿𝑍𝑖
. Let 𝐹⋆ be the c.d.f. of the marginal distribution of the 𝑍𝑖’s, i.e., 𝐹⋆ has density

𝑓𝐺 ≡ 𝑓⋆ (see Eq. 7.2). We will show that there exists a set 𝐵 with probability 1 such that for
each 𝜔 ∈ 𝐵, given any subsequence of {𝐺𝑛(⋅; 𝜔)}𝑛≥1 there exists a further subsequence which
converges weakly to 𝐺; this will then complete the proof (see e.g., Theorem 3.2.9 in Durrett
(2010)).

Recall that the first order optimality of 𝐺𝑛 implies that

𝑚
∑
𝑗=1

𝑛𝑗 { 𝑓⋆(𝑦𝑗)
𝑓𝐺𝑛

(𝑦𝑗)
− 1} ≤ 0 ⇔ ∫ 𝑓⋆(𝑧)

𝑓𝐺𝑛
(𝑧) 𝑑𝐹𝑛(𝑧) ≤ 1. (7.23)

For 𝜖, define the compact set

𝐴𝜖 ∶= {𝑧 ∈ ℝ ∶ 𝑓⋆(𝑧) ≥ 𝜖} ∩ [−1
𝜖 , 1

𝜖 ], s.t. 𝐹⋆(𝐴𝜖) > 0. (7.24)

By the Glivenko-Cantelli theorem, we have,

ℙ [𝐵] = 1, where 𝐵 ∶= {𝜔 ∶ ‖𝐹𝑛(⋅; 𝜔) − 𝐹⋆‖∞ ∶= sup
𝑧∈ℝ

|𝐹𝑛(𝑧; 𝜔) − 𝐹⋆(𝑧)| → 0, as 𝑛 → ∞}.

Fix 𝜖 ∶= 1/𝑗 for some 𝑗. Let 𝜔 ∈ 𝐵. Then,17

𝐹𝑛(𝐴𝜖) → 𝐹⋆(𝐴𝜖) > 0 as 𝑛 → ∞. (7.25)

By Helly’s selection theorem (see Theorem 3.2.6 of Durrett (2010)), the sequence of distri-
bution functions {𝐺𝑛𝑘

(⋅; 𝜔)}𝑘≥1 has a subsequence {𝐺𝑛𝑘𝑙
(⋅; 𝜔)}𝑙≥1 converging vaguely18 to a

sub-distribution function ̃𝐺 (say). We have to show that ̃𝐺 = 𝐺.

Lemma 7.3. We have, for 𝜔 ∈ 𝐵,

lim
𝑙→∞

∫
𝐴𝜖

𝑓⋆(𝑧)
𝑓𝐺𝑛𝑘𝑙

(𝑧; 𝜔) 𝑑𝐹𝑛𝑘𝑙
(⋅; 𝜔) = ∫

𝐴𝜖

𝑓⋆(𝑧)
𝑓 ̃𝐺(𝑧) 𝑑𝐹⋆(𝑧) ≤ 1. (7.26)

17This is because of the continuous mapping theorem (see e.g., Theorem 3.2.4 in Durrett (2010)): Note
that 𝜓(𝑧) ∶= 1𝐴𝜖 (𝑧), for 𝑧 ∈ ℝ, is a measurable and bounded function such that 𝐷𝜓 ∶= {𝑧 ∈
ℝ ∶ 𝜓 is discontinuous at 𝑧} as Lebesgue measure 0. Thus, for 𝑍 ∼ 𝐹⋆, ℙ [𝑍 ∈ 𝐷𝜓] = 0, and then
𝐹𝑛(𝐴𝜖) = ∫ 𝜓 𝑑𝐹𝑛 → ∫ 𝜓 𝑑𝐹 = 𝐹(𝐴𝜖).

18See Chapter 4 in Chung (1974) for the formal definition and study of vague convergence.
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Now, by monotone convergence theorem Eq. 7.26, where to take 𝜖 = 1/𝑗 → 0 as 𝑗 → ∞ (so
that 𝐴1/𝑗 increases to ℝ) we have ∫ 𝑓⋆(𝑧)

𝑓𝐺̃(𝑧) 𝑑𝐹⋆(𝑧) ≤ 1, i.e., ∫ 𝑓2
𝐺(𝑧)

𝑓𝐺̃(𝑧) 𝑑𝑧 ≤ 1.

Lemma 7.4. ∫ 𝑓2
𝐺(𝑧)

𝑓𝐺̃(𝑧) 𝑑𝑧 ≤ 1 implies that 𝑓 ̃𝐺 = 𝑓𝐺.19

As 𝑓⋆ ≡ 𝑓𝐺, under assumption (iv) of identifiability in the theorem, we immediately have
̃𝐺 = 𝐺.

We can thus conclude from this that every subsequence of the sequence {𝐺𝑛(⋅; 𝜔)}𝑛≥1 has a
convergent subsequence, and that all these subsequences have the same weak limit 𝐺. This
implies the consistency of the NPMLE 𝐺𝑛.

Proof of Lemma 7.3. For notational simplicity let us rename {𝐺𝑛𝑘𝑙
(⋅)}𝑙≥1 to {𝐺𝑛(⋅)}𝑛≥1 and

assume that 𝐺𝑛
𝑣→ ̃𝐺 as 𝑛 → ∞, where

𝑣→ denotes vague convergence. Further, we fix 𝜔 ∈ 𝐵
and hide the dependence on the random quantities on 𝜔. Note that for every fixed 𝑧 ∈ ℝ, the
function 𝑝(𝑧 − ⋅) is continuous and satisfies lim|𝑦|→∞ 𝑝(𝑧 − 𝑦) = 0. Thus, from the definition
of vague convergence (see e.g., Theorem 4.4.1 in Chung (1974)), we have

lim
𝑛→∞

𝑓𝐺𝑛
(𝑧) = lim

𝑛→∞
∫ 𝑝(𝑧 − 𝜃) 𝑑𝐺𝑛(𝜃) → ∫ 𝑝(𝑧 − 𝜃) 𝑑 ̃𝐺(𝜃) = 𝑓 ̃𝐺(𝑧). (7.27)

As 𝑝(⋅) is uniformly continuous on ℝ, so is 𝑓𝐺𝑛
; in fact, the sequence {𝑓𝐺𝑛

}𝑛≥1 is uniformly
equicontinuous on ℝ.20 Further, as 𝑝(⋅) is upper bounded, {𝑓𝐺𝑛

}𝑛≥1 is pointwise bounded.
Now, by the Arzela-Ascoli theorem (see e.g.,Theorem 4.44 in Folland (1999)), {𝑓𝐺𝑛

}𝑛≥1 con-
verges uniformly on 𝐴𝜖 to 𝑓 ̃𝐺.

21

19This lemma immediately follows as ∫ 𝑓2
𝐺(𝑧)

𝑓𝐺̃(𝑧) 𝑑𝑧 − 1 = ∫ ( 𝑓𝐺(𝑧)
𝑓𝐺̃(𝑧) − 1)

2
𝑓𝐺̃(𝑧) 𝑑𝑧 ≥ 0 with equality iff 𝑓𝐺 = 𝑓𝐺̃

a.s. As both 𝑓𝐺 and 𝑓𝐺̃ are continuous, this implies we must have 𝑓𝐺 = 𝑓𝐺̃.
20As 𝑝(⋅) is uniformly continuous on ℝ, given any 𝜂 > 0, there exists 𝛿 > 0 such that whenever 𝑦1, 𝑦2 ∈ ℝ and

|𝑦1 − 𝑦2| < 𝛿, we have |𝑝(𝑦1) − 𝑝(𝑦2)| < 𝜂. Then,

|𝑓𝐺𝑛
(𝑦1) − 𝑓𝐺𝑛

(𝑦2)| ≤ ∫ |𝑝(𝑦1 − 𝜃) − 𝑝(𝑦2 − 𝜃)| 𝑑𝐺𝑛(𝜃) < 𝜂,

as |(𝑦2 − 𝜃) − (𝑦1 − 𝜃)| = |𝑦1 − 𝑦2| < 𝛿. Hence, 𝑓𝐺𝑛
(⋅) is also uniformly continuous on ℝ. Further, as 𝛿 only

depends on 𝜂, but not on 𝑦1, 𝑦2 or 𝑛, the sequence {𝑓𝐺𝑛
}𝑛≥1 is uniformly equicontinuous on ℝ.

21Note that Arzela-Ascoli says that {𝑓𝐺𝑛
}𝑛≥1 has a subsequence that converges uniformly on 𝐴𝜖 to a continuous

limit function. However, as {𝑓𝐺𝑛
}𝑛≥1 converges pointwise to 𝑓𝐺̃, the entire sequence {𝑓𝐺𝑛

}𝑛≥1 converges
uniformly to the limit 𝑓𝐺̃.
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We now claim that there exists an interval [−𝑎, 𝑎] ⊂ ℝ such that 𝐴𝜖 ⊂ [−𝑎, 𝑎] and 𝐺𝑛([−𝑎, 𝑎]) ≥
𝛿 > 0, for all large 𝑛, for some 𝛿 > 0.22

Thus, for all large 𝑛, we have, for any 𝑧 ∈ 𝐴𝜖, using the unimodality of 𝑝(⋅),

𝑓𝐺𝑛
(𝑧) ≥ ∫

[−𝑎,𝑎]
𝑝(𝑧 − 𝜃) 𝑑𝐺𝑛(𝜃) ≥ min{𝑝(𝑧 − 𝑎), 𝑝(𝑧 + 𝑎)} ∫

[−𝑎,𝑎]
𝑑𝐺𝑛(𝜃)

≥ 𝛿 min{𝑝(𝑧 − 𝑎), 𝑝(𝑧 + 𝑎)}
≥ 𝛿 𝑝(2𝑎) =∶ 𝛿𝑎 > 0.

Thus, 𝑓𝐺𝑛
is strictly positive on 𝐴𝜖. As 𝑓𝐺𝑛

is uniformly continuous and nonzero on the
compact set 𝐴𝜖 then 1/𝑓𝐺𝑛

is also uniformly continuous on 𝐴𝜖.

Let ℎ𝑛(𝑧) ∶= 𝑓⋆(𝑧)
𝑓𝐺𝑛 (𝑧) , for 𝑧 ∈ ℝ. Then, for 𝑛 large (say 𝑛 ≥ 𝑛0),

ℎ𝑛(𝑧) ∶= 𝑓⋆(𝑧)
𝑓𝐺𝑛

(𝑧) ≤ 𝑝max
𝛿𝑎

, for 𝑧 ∈ 𝐴𝜖. (7.28)

Note that by Eq. 7.27, for 𝑧 ∈ 𝐴𝜖 (and as 𝑓 ̃𝐺(𝑧) = lim𝑛→∞ 𝑓𝐺𝑛
(𝑧) ≥ 𝛿𝑎),

ℎ𝑛(𝑧) → ℎ(𝑧) ∶= 𝑓⋆(𝑧)
𝑓 ̃𝐺(𝑧) as 𝑛 → ∞.

Further, ℎ𝑛 is a continuous function on 𝐴𝜖; moreover, the sequence {ℎ𝑛}𝑛≥𝑛0
is uniformly

equicontinuous23 on 𝐴𝜖 and pointwise bounded (by Eq. 7.28). Thus, again, by the Arzela-
Ascoli theorem {ℎ𝑛}𝑛≥𝑛0

converges uniformly on the compact set 𝐴𝜖 to ℎ.

22To see this, note that for any interval [−𝑎, 𝑎] ⊇ 𝐴𝜖, and 𝑧 ∈ 𝐴𝜖,

𝑓𝐺𝑛
(𝑧) = ∫

[−𝑎,𝑎]
𝑝(𝑧 − 𝜃) 𝑑𝐺𝑛(𝜃) + ∫

[−𝑎,𝑎]𝑐
𝑝(𝑧 − 𝜃) 𝑑𝐺𝑛(𝜃)

≤𝑝max 𝐺𝑛([−𝑎, 𝑎]) + 𝑝(𝑎 − 𝜖−1) =∶ 𝛾𝑎,𝑛

where we have used the facts: (i) 𝑝(⋅) is upper bounded by 𝑝max, and (ii) for 𝑧 ∈ 𝐴𝜖 ⊆ [−𝜖−1, 𝜖−1] and
𝜃 ∈ [−𝑎, 𝑎]𝑐, |𝑧 − 𝜃| ≥ 𝑎 − 𝜖−1 which implies that 𝑝(𝑧 − 𝜃) ≤ 𝑝(𝑎 − 𝜖−1) (as 𝑝(⋅) is decreasing on [0, ∞)).
Therefore, using the facts that: (a) for 𝑧 ∈ 𝐴𝜖, 𝑓⋆(𝑧) ≥ 𝜖, and (b) 𝐹𝑛(𝐴𝜖) ≥ 𝐹⋆(𝐴𝜖)/2 for all 𝑛 sufficiently
large, we have, for all 𝑛 sufficiently large

1 ≥ ∫
𝐴𝜖

𝑓⋆(𝑧)
𝑓𝐺𝑛

(𝑧) 𝑑𝐹𝑛(𝑧) ≥ 𝜖
𝛾𝑎,𝑛

𝐹𝑛(𝐴𝜖) ≥ 𝜖
2𝛾𝑎,𝑛

𝐹⋆(𝐴𝜖),

which yields
𝛾𝑎,𝑛 ≥ 𝜖

2𝐹⋆(𝐴𝜖) ⇔ 𝐺𝑛([−𝑎, 𝑎]) ≥ 𝑝−1
max { 𝜖

2 − 𝑝(𝑎 − 𝜖−1)} .

But as $a →∞$, 𝑝(𝑎−𝜖−1) → 0, and thus, there exists 𝑎 ∈ ℝ such that 𝐺𝑛([−𝑎, 𝑎]) ≥ 𝛿 > 0 for some 𝛿 > 0.
23Show this.
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∣∫
𝐴𝜖

ℎ𝑛(𝑧) 𝑑𝐹𝑛(𝑧) − ∫
𝐴𝜖

ℎ(𝑧) 𝑑𝐹⋆(𝑧)∣

≤ ∣∫
𝐴𝜖

ℎ𝑛(𝑧) 𝑑𝐹𝑛(𝑧) − ∫
𝐴𝜖

ℎ(𝑧) 𝑑𝐹𝑛(𝑧)∣ + ∣∫
𝐴𝜖

ℎ(𝑧) 𝑑𝐹𝑛(𝑧) − ∫
𝐴𝜖

ℎ(𝑧) 𝑑𝐹⋆(𝑧)∣

≤ sup
𝑧∈𝐴𝜖

|ℎ𝑛(𝑧) − ℎ(𝑧)| + 𝑜(1) = 𝑜(1) as 𝑛 → ∞,

where the first term in the above display converges to zero as ℎ𝑛(⋅) converges uniformly to
ℎ(⋅) on 𝐴𝜖 and the second term converges to 0 by an application of the continuous mapping
theorem (see Theorem 3.2.4 in Durrett (2010)) as in the proof of Eq. 7.25.
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8 Multiple Testing and empirical Bayes

We now turn to study one of the most important and beautiful areas of statisics: multiple
testing.

There are three views of multiple testing that we will describe here.

• Multiple testing as a burden (Section 8.2): the more hypotheses we are testing, the
more false discoveries we are bound to make.

• Multiple testing as an opportunity to draw inferences that were not possible in classical
statistics: an empirical Bayesian has good reasons to be excited about multiple testing!

• A middle-of-the-road approach: modern multiple testing is largely about recognizing
both the possible burdens and the opportunities.

Before taking on the multiple testing problem, however, we provide a bird’s overview of single
hypothesis testing (and we refer the reader to, e.g., Erich L. Lehmann and Romano (2005) for
a comprehensive textbook reference).

8.1 Single hypothesis testing recap

Consider a simple statistical decision problem with parameter 𝜃 ∈ Θ where we observe:

𝑍 ∼ 𝑝(⋅ ∣ 𝜃). (8.1)

In hypothesis testing, we partition, Θ into a disjoint union,

Θ = Θ0 ⊔ Θ1,

and then seek to decide between the two options:

𝐻0 ∶ 𝜃 ∈ Θ0 vs. 𝐻1 ∶ 𝜃 ∈ Θ1,

where we call 𝐻0 the null hypothesis and 𝐻1 the alternative. We consider decision rules
𝑡(𝑧) ∈ 𝒯 = {0, 1} where 𝑡(𝑧) = 1 implies that we choose 𝐻1; in statistical parlance we then
reject the null hypothesis.

There are two possible errors that 𝑡(𝑧) can make. In hypothesis testing, one typically is more
interested in preventing type-I errors, that is, to declare 𝑡(𝑧) = 1 while 𝐻0 is actually true.
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Hence we typically only search for decision rules that satisfy the following guarantee for a
pre-specified 𝛼 ∈ (0, 1)

sup
𝜃∈Θ0

ℙ𝜃 [𝑡(𝑍) = 1] ≤ 𝛼. (8.2)

This guarantee is easily satisfied in the special case wherein Θ0 = {𝜃0} is a singleton. In that
case, we only require ℙ𝜃0

[𝑡(𝑍) = 1] ≤ 𝛼, i.e., we have a constraint with respect to a single
and known probability measure. For simplicity in the remainder of this chapter we make the
assumption that Θ0 = {𝜃0} is indeed a singleton.

A large chunk of the multiple testing literature provides type-I error control guarantees when
the null distribution of 𝑍 is known, but remains agnostic about its possible distribution under
alternatives. This idea is typically captured through the notion of a p-value.

Definition 8.1 (p-value for a simple hypothesis). Suppose we are testing a null hypothesis
𝐻0 ∶ 𝜃 = 𝜃0. A random variable 𝑃 ∈ [0, 1] is called a p-value for the hypothesis 𝐻0 ∶ 𝜃 = 𝜃0 if
it is uniformly distributed under 𝜃0, that is,

ℙ𝜃0
[𝑃 ≤ 𝑡] = 𝑡 for all 𝑡 ∈ [0, 1].

It is also typically assumed that for 𝜃 ≠ 𝜃0, the p-value will be stochastically smaller than
uniform and that small realized values of the p-value provide evidence against 𝐻0.

This is clearly not the most general definition of a p-value. This definition however suffices for
our brief recap here and captures the following important notions:

• Typically 𝑃 will be measurable function of 𝑍 in Eq. 8.1, i.e., 𝑃 = 𝑃(𝑍). As we know
the distribution of 𝑍 under the null hypothesis by transformation we may set it to be
uniform (at least when 𝑍 ∈ ℝ and the distribution of 𝑍 is absolutely continuous).

• It provides an interpretable scale with which to base decisions. To get guarantee Eq. 8.2
at a fixed 𝛼, one can use the decision rule 𝑡(𝑍) ≡ 𝑡(𝑃 ) = 1(𝑃 ≤ 𝛼).

Definition 8.1 also helps with potential misunderstanding of what a p-value is. It makes it very
clear that, e.g., under hypothetical replications of an experiment with no signal, one would
expect to get p-values ≤ 0.05, 5% of the time.

Example 8.1. Suppose 𝑍 ∼ 𝒩(𝜃, 1) and we seek to test whether 𝐻0 ∶ 𝜃 = 0 against 𝐻1 ∶ 𝜃 ≠ 0.
A p-value is then given by:

𝑃 = 2(1 − Φ(|𝑍|)),
where Φ is the standard normal distribution function.
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8.2 Multiple testing as a burden

We are ready to move on to the multiple testing setting. Here we are faced with 𝑛 hypothesis
tests

𝐻𝑖,0 ∶ 𝜃𝑖 = 𝜃𝑖,0 vs 𝐻𝑖,1 ∶ 𝜃𝑖 ≠ 𝜃𝑖,0

based on data 𝐙 = (𝑍1, … , 𝑍𝑛), with

𝑍𝑖 ∼ 𝑝𝑖(⋅ ∣ 𝜃𝑖).

We write ℋ0 ⊂ {1, … , 𝑛} for the subset of hypotheses such that 𝐻0,𝑖 holds. We also write
𝑛0 ∶= #ℋ0 for the total number of null hypotheses.

A multiple testing procedure consists of a decision rule 𝐭(𝐙) = (𝑡1(𝐙), … , 𝑡𝑛(𝐙)) ∈ {0, 1}𝑛 with
the interpretation that 𝑡𝑖(𝐙) = 1 implies rejection of the null hypothesis 𝐻0,𝑖. This will be
called a false discovery if 𝐻0,𝑖 is true. Hence the total number of discoveries is given by:

𝑅 = 𝑅(𝐭) =
𝑛

∑
𝑖=1

1(𝑡𝑖(𝐙) = 1), (8.3)

and the total number of false discoveries is given by:

𝑉 = 𝑉 (𝐭) = ∑
𝑖∈ℋ0

1(𝑡𝑖(𝐙) = 1). (8.4)

Often we will first replace the 𝑍𝑖 by a p-value 𝑃𝑖, in which case we write 𝐏 = (𝑃1, … , 𝑃𝑛). In
that case we write 𝐭(𝐏) multiple testing decision.

The fundamental challenge of multiple testing is captured by the following simple computation.
If we proceed as in single hypothesis testing and take 𝑡𝑖(𝐏) = 1(𝑃𝑖 ≤ 𝛼) for a fixed 𝛼, say
𝛼 = 0.05, then we will potentially incur a lot of false (spurious) discoveries. To see this, note
that the above decision rule satisfies the following:

𝔼 [𝑉 ] = ∑
𝑖∈ℋ0

𝔼 [1(𝑃𝑖 ≤ 𝛼)] = 𝑛0𝛼,

i.e., the expected number of false discoveries is equal to 𝑛0𝛼. Furthermore, if the p-values
𝑃1, … , 𝑃𝑛 are mutually independent, then we will make a false discovery with high probabil-
ity:

ℙ [𝑉 ≥ 1] = 1 − ℙ [𝑉 = 0] = 1 − ℙ [𝑃𝑖 > 𝛼 for all 𝑖 ∈ ℋ0] = 1 − (1 − 𝛼)𝑛0 ,
and so for 𝑛0 large enough, we are virtually guaranteed to make at least one false discovery.

A traditional goal in multiple testing is to avoid making any spurious discoveries with high
probability, as formalized in the following definition.

122



Definition 8.2 (Family-Wise Error Rate). The family-wise error rate (FWER) of a multiple
testing procedure 𝐭 is defined as:

FWER ∶= ℙ [𝑉 (𝐭) ≥ 1]

We say that a procedure controls the FWER at level 𝛼, if FWER ≤ 𝛼.

Perhaps the most classical procedure to achieve this goal is the famous and (very) conservative
Bonferroni procedure:

Definition 8.3 (Bonferroni procedure). Given 𝑛 p-values 𝑃1, … , 𝑃𝑛 and nominal level 𝛼, the
Bonferroni procedure takes the following form:

𝐭(𝐏) = (1(𝑃1 ≤ 𝛼/𝑛), … , 1(𝑃𝑛 ≤ 𝛼/𝑛)).

We can show that the Bonferroni procedure controls the FWER at level 𝛼.

FWER = ℙ [𝑉 ≥ 1] ≤ 𝔼 [𝑉 ] = ∑
𝑖∈ℋ0

𝔼 [1(𝑃𝑖 ≤ 𝛼/𝑛)] = 𝑛0
𝛼
𝑛 ≤ 𝛼.

Hence the Bonferroni procedure protects us from false discoveries, but this comes at a cost:
we need to test each hypothesis at level 𝛼/𝑛, and if 𝑛 is large (say 𝑛 ≈ 20, 000, as in genomics
studies), then we may not be able to make any discovery at all. Hence multiple testing is often
interpreted as a burden.

8.3 Multiple testing as an opportunity: empirical Bayes

We now switch gears and treat the multiple testing problem as an empirical Bayes problem.

We now model our setting in the following “typical” empirical Bayes fashion:

𝜃𝑖
iid∼ 𝐺, 𝑍𝑖 ∣ 𝜃𝑖 ∼ 𝑝(⋅ ∣ 𝜃𝑖), (8.5)

and we assume for simplicity that all null hypotheses are given by 𝐻0,𝑖 ∶ 𝜃𝑖 = 𝜃0. We also
introduce the (random) indicators 𝐻𝑖 = 1(𝜃𝑖 ≠ 𝜃0) ∈ {0, 1}. Then we have that the set of null
hypotheses ℋ0 is in fact random an equal to {𝑖 ∶ 𝐻𝑖 = 0} with (random) cardinality 𝑛0. We
write 𝜋0 ∶= ℙ [𝐻𝑖 = 0] = ℙ𝐺 [𝜃𝑖 = 𝜃0].
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8.3.1 The two-groups model

Eq. 8.5 and the definition of 𝐻𝑖 imply the alternative equivalent data-generating mechanism.

𝐻𝑖 ∼ Bernoulli(1 − 𝜋0),
𝑍𝑖 ∣ 𝐻𝑖 = 0 ∼ 𝑝(⋅ ∣ 𝜃0),

𝑍𝑖 ∣ 𝐻𝑖 = 1 ∼ 1
1 − 𝜋0

∫
Θ\{𝜃0}

𝑝(⋅ ∣ 𝜃)𝑑𝐺(𝜃).
(8.6)

The above connection is important to understand how a lot of the empirical Bayes multiple
testing literature relates to empirical Bayes outside of multiple testing. Specifically, the start-
ing point for the empirical Bayes multiple testing literature is often the following celebrated
two-groups model (often Bradley Efron, Tibshirani, Storey, and Tusher (2001) for an early
appearance of the two-groups model):

𝐻𝑖 ∼ Bernoulli(1 − 𝜋0),
𝑍𝑖 ∣ 𝐻𝑖 = 0 ∼ 𝐹null(⋅),
𝑍𝑖 ∣ 𝐻𝑖 = 1 ∼ 𝐹alt(⋅).

(8.7)

Starting with Eq. 8.7 instead of Eq. 8.5 has the following interpretation: we only need to
believe the distributional assumption of Eq. 8.5 at the null 𝜃 = 𝜃0, while for the alternatives
we do not need to impose the form given in Eq. 8.6. Furthermore, we can forget about the
latent 𝜃𝑖 (which may take values e.g., in ℝ), and instead we only need to focus on the binary
latent variable 𝐻𝑖 ∈ {0, 1}. Furthermore, once we turn the empirical Bayes crank, we typically
assume that 𝐹null(⋅) is known, and under Eq. 8.5 we would need to estimate the unknown 𝐺,
while under Eq. 8.7 we would need to estimate 𝐹alt and 𝜋0.

It is important to note that under Eq. 8.7, the marginal distribution of 𝑍𝑖 is given by:

𝑍𝑖 ∼ 𝐹(⋅) ∶= 𝜋0𝐹null(⋅) + (1 − 𝜋0)𝐹alt(⋅). (8.8)

The upshot of the two-groups model Eq. 8.7 is that it makes it easy to derive optimal multiple
testing procedures. These typically take the form of rejecting hypothesis with a small value of
the local false discovery rate, which is defined as:

Lfdr𝑖 ∶= ℙ [𝐻𝑖 = 0 ∣ 𝐙] . (8.9)

When we assume that the pairs (𝜃𝑖, 𝑍𝑖) for 𝑖 ∈ {1, … , 𝑛} are mutually independent, then
Lfdr𝑖 ∶= ℙ [𝐻𝑖 = 0 ∣ 𝑍𝑖]. Furthermore, if 𝐹 and 𝐹null have densities 𝑓 , resp. 𝑓null, then:

Lfdr𝑖 = 𝜋0𝑓null(𝑍𝑖)
𝑓(𝑍𝑖)

. (8.10)

The following optimality result is one of the cornerstones of the literature; it has appeared in
various forms e.g., in Sun and Cai (2007) and Cai, Li, Maris, and Xie (2011).
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Theorem 8.1 (Optimal weighted classification with local false discoveries). Let 𝐭(𝐙) be a
multiple testing procedure. Suppose we evaluate it based on the following loss, where 𝐇 =
(𝐻1, … , 𝐻𝑛) and 𝜆 ∈ (0, 1) is fixed:

ℓ(𝐭(𝐙), 𝐇) =
𝑛

∑
𝑖=1

[(1 − 𝜆)1(𝑡𝑖(𝐙) = 1, 𝐻𝑖 = 0) + 𝜆1(𝑡𝑖(𝐙) = 0, 𝐻𝑖 = 1)] .

Then the optimal decision takes the form:

𝑡∗
𝑖(𝐙) = 1(Lfdr𝑖 ≤ 𝜆).

Proof. As we have argued before, it suffices to solve the following minimization problem:

𝑡𝑖(𝐙) ∈ argmin
𝑡𝑖∈{0,1}

{(1 − 𝜆)𝔼 [𝜆1(𝑡𝑖 = 1, 𝐻𝑖 = 0) + 𝜆1(𝑡𝑖 = 0, 𝐻𝑖 = 1) ∣ 𝐙]} .

For 𝑡𝑖 = 1, the above objective induces posterior risk (1 − 𝜆)ℙ [𝐻𝑖 = 0 ∣ 𝐙] and for 𝑡𝑖 = 0, it
induces posterior risk 𝜆(1 − ℙ [𝐻𝑖 = 0 ∣ 𝐙]). Hence we should choose 𝑡𝑖 = 1, when:

(1 − 𝜆)ℙ [𝐻𝑖 = 0 ∣ 𝐙] ≤ 𝜆(1 − ℙ [𝐻𝑖 = 0 ∣ 𝐙]),

or equivalently:
ℙ [𝐻𝑖 = 0 ∣ 𝐙]

1 − ℙ [𝐻𝑖 = 0 ∣ 𝐙] ≤ 𝜆
1 − 𝜆.

Hence recalling that Lfdr𝑖 = ℙ [𝐻𝑖 = 0 ∣ 𝐙], we see that indeed the optimal decision is given
by:

𝑡𝑖(𝐙) = 1(ℙ [𝐻𝑖 = 0 ∣ 𝐙] ≤ 𝜆).

The result of Theorem 8.1 can be used also to prove that when searching for optimal multiple
testing procedures, it often suffices to consider procedures of the form

{𝐭(𝐙) = (1(Lfdr1 ≤ 𝜆), … , 1(Lfdr𝑛 ≤ 𝜆)) ∶ 𝜆 ∈ [0, 1]} . (8.11)

8.3.2 Empirical Bayes implementation of the local false discovery procedure

Theorem 8.1 established that optimal decision rules often reject for small values of the local
false discovery rate, which however is not known. It can however be estimated through the
empirical Bayes principle.

For example, suppose that we are willing to posit independence and existence of densities 𝑓0, 𝑓
so that Eq. 8.10 holds. Then one can estimate the local false discovery rate with the following
two approaches.
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1. F-modeling: Let ̂𝜋0 be an estimate of 𝜋0 and let ̂𝑓 be an estimate of the density of
𝑍1, … , 𝑍𝑛 (e.g., a kernel density estimator). Then the local false discovery rate can be
estimated as:

L̂fdr𝑖 = ̂𝜋0𝑓null(𝑍𝑖)
̂𝑓(𝑍𝑖)

.

This approach is pursued e.g., by Sun and Cai (2007), Bradley Efron (2007), and Strim-
mer (2008). We do not discuss estimation of 𝜋0 here; we refer the reader to e.g.,
Storey (2002), Storey, Taylor, and Siegmund (2004), Langaas, Lindqvist, and Ferkingstad
(2005),Meinshausen and Rice (2006), Jin (2008). In practice one often sets ̂𝜋0 ≡ 1 as a
conservative choice (especially when it is believed that most null hypotheses are actually
true).

2. G-modeling: If one is willing to also assume the full empirical Bayes model Eq. 8.5,
then one could estimate 𝐺 (as in previous chapters), and then let:

L̂fdr𝑖 = ̂𝜋0𝑓null(𝑍𝑖)
𝑓𝐺(𝑍𝑖)

,

where we recall that 𝑓𝐺(𝑧) = ∫ 𝑝(𝑧 ∣ 𝜃)𝑑𝐺(𝜃). This approach is pursued e.g., by Scott
et al. (2015),Gu and Shen (2018), Deb, Saha, Guntuboyina, and Sen (2022). A note
of caution: we typically cannot estimate 𝜋0 by 𝐺({𝜃0}); the reason is that the typical
weak convergence guarantees of 𝐺 to 𝐺 do not lead to consistent estimation of point
masses. We refer to Gu and Shen (2018) for further discussion of this point, and we
suggest setting ̂𝜋0 = 1 as a reasonable default choice.

8.3.3 Empirical Bayes multiple testing decisions based on p-values

If we have already collapsed 𝑍𝑖 to p-values 𝑃𝑖, then the two-groups-model Eq. 8.7 takes the
form:1

𝐻𝑖 ∼ Bernoulli(1 − 𝜋0),
𝑃𝑖 ∣ 𝐻𝑖 = 0 ∼ 𝑈[0, 1],
𝑃𝑖 ∣ 𝐻𝑖 = 1 ∼ 𝐹alt(⋅).

(8.12)

Analogously to Eq. 8.13, the marginal distribution of a p-value 𝑃𝑖 is given by:

𝑃𝑖 ∼ 𝐹(⋅) ∶= 𝜋0𝑈[0, 1] + (1 − 𝜋0)𝐹alt(⋅). (8.13)

Now suppose momentarily that following common practice, we seek multiple testing procedures
that reject hypotheses with small p-values, i.e., we consider multiple testing procedures of the

1Below, 𝐹alt refers generically to the distribution of the alternative p-values. If 𝑃𝑖 is computed as a function
of 𝑍𝑖 in Eq. 8.7, then the alternative distribution of 𝑍𝑖 will imply the alternative distribution of 𝑃𝑖 as well.
(Note the abuse of notation: 𝐹alt in Eq. 8.7 and Eq. 8.12 in general do not refer to the same distribution
unless 𝑍𝑖 is already a p-value.)
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form:2
{𝐭(𝐏) = 𝐭𝛾(𝐏) = (1(𝑃1 ≤ 𝛾), … , 1(𝑃𝑛 ≤ 𝛾)) ∶ 𝛾 ∈ [0, 1]} . (8.14)

Does the empirical Bayes principle provide a basis for choosing among Eq. 8.14? One possibility,
is the following. Let us define the marginal false discovery rate of the rule 𝐭𝛾 as:

mFDR(𝛾) ≡ mFDR(𝐭𝛾) = ℙ [𝐻𝑖 = 0 ∣ 𝑃𝑖 ≤ 𝛾] = 𝜋0𝛾
𝐹(𝛾) , (8.15)

that is the posterior probability of being null conditionally on being rejected by 𝑡𝛾. Suppose
we seek to keep this probability below 𝛼, then we could proceed as follows:

𝛾∗ = sup {𝛾 ∈ [0, 1] ∶ mFDR(𝛾) ≤ 𝛼} ,

and then reject all hypotheses with 𝑃𝑖 ≤ 𝛾∗.

The above procedure of course depends on the unknown marginal distribution 𝐹(⋅) and on 𝜋0
in Eq. 8.15. Suppose we proceed in an empirical Bayes fashion, by first conservatively setting

̂𝜋0 = 1, and estimating 𝐹(⋅) by the empirical distribution function of 𝑃1, … , 𝑃𝑛, i.e.,

̂𝐹 (⋅) = 1
𝑛

𝑛
∑
𝑖=1

1(𝑃𝑖 ≤ ⋅).

Then we also have the following estimator of the marginal false discovery rate:

m̂FDR(𝛾) ∶= 𝛾
max{ ̂𝐹 (𝛾), 𝑛−1}

. (8.16)

This motivates the following multiple testing procedure:

Definition 8.4 (The Benjamini-Hochberg procedure (empirical process perspective)).

1. Let ̂𝛾∗ = sup{𝛾 ∈ [0, 1] ∶ m̂FDR(𝛾) ≤ 𝛼}, where m̂FDR(𝛾) is defined in Eq. 8.16.
2. Reject all hypotheses with 𝑃𝑖 ≤ ̂𝛾∗.

As already alluded to in the title, the above procedure is the famous multiple testing procedure
of Benjamini and Hochberg (1995) that has been one of the most important innovations in
statistical theory in the last three decades. We will study the procedure in more detail in
the next section. Benjamini and Hochberg (1995) presented the procedure in a different, but
equivalent form, and the formulation above is due to Storey, Taylor, and Siegmund (2004)
(cf. Lemma 1 therein).

2It is worth noting that in general the following class of multiple testing rules is not equivalent to decision
rules Eq. 8.11 when 𝐏 ≡ 𝐙, i.e., to rules of the form 𝑡𝑖(𝐏) = 1(Lfdr𝑖 ≤ 𝜆) for some 𝜆 where Lfdr𝑖 =
ℙ [𝐻𝑖 = 0 ∣ 𝑃𝑖]. Hence the class Eq. 8.14 may not contain optimal rules. See Cao, Sun, and Kosorok (2013)
for a discussion.
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In view of Eq. 8.15, we have the following beautiful interpretation: m̂FDR(𝑃𝑖) is the posterior
probability that 𝐻𝑖 is null given that the realized value of its p-value is below 𝑃𝑖. Perhaps
interestingly, this is a common misconception of what a p-value is. The empirical Bayes
perspective thus turned a misconception into an actionable and interpretable concept.

We now also point out another interpretation of the BH procedure. For 𝛾 ∈ [0, 1], define:

̂𝑞(𝑝) ∶= inf
𝛾≥𝑝

m̂FDR(𝛾). (8.17)

In other words, the above definition implements a monotonization m̂FDR(⋅): 𝑝 ↦ ̂𝑞(𝑝) is
always non-decreasing in 𝑝, while this won’t be true for m̂FDR(⋅).
We have the following further equivalent representation of the BH-procedure:

The Benjamini-Hochberg procedure (q-value perspective)

1. Compute ̂𝑞(𝑃1), … , ̂𝑞(𝑃𝑛) with ̂𝑞(⋅) defined in Eq. 8.17.
2. Reject 𝐻𝑖 if ̂𝑞(𝑃𝑖) ≤ 𝛼.

̂𝑞(𝑃𝑖) are called q-values by Storey (2002) who introduced them. They are often also called
adjusted p-values.

8.4 Middle-of-the-road: empirical Bayes powered multiple testing
with frequentist guarantees

A major breakthrough in modern statistics was the definition of the false discovery rate by
Benjamini and Hochberg (1995). Given a multiple testing decision procedure, let us recall
that we used 𝑅 to denote the total number of discoveries (Eq. 8.3) and 𝑉 to denote the total
number of false discoveries. The false discovery proportion FDP, is defined as follows:

FDP ∶= 𝑉
max {𝑅, 1}.

Note that when no discoveries are made, i.e., when 𝑉 = 𝑅 = 0, then FDP = 0. On the other
hand, when at least one discovery is made, i.e., 𝑅 ≥ 1, then the FDP is the proportion of false
discoveries among all discoveries. Finally, the false discovery rate is defined as the expectation
of the false discovery proportion, that is:

FDR ∶= 𝔼 [FDP] . (8.18)

Benjamini and Hochberg (1995) proposed to contruct multiple testing procedures, such that
the FDR is controlled at a pre-specified level 𝛼.
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At least conceptually, the motivation for defining the FDR is similar to the definition of
mFDR in Eq. 8.15; however the FDR may be defined as a purely frequentist notion, with-
out reference to the e.g., the two-groups model Eq. 8.12. In fact, as we will see below, the
Benjamini-Hochberg (BH) procedure that we motivated previously by applying the empirical
Bayes principle to mFDR control in the two-groups model Eq. 8.12 controls the FDR under
substantially more general assumptions.

Before turning to FDR control of the BH procedure, however, we explain how the FDR can
be controlled under Eq. 8.12.

8.4.1 Controlling the FDR based on local false discoveries

Suppose that the two-group model Eq. 8.7 holds for 𝑖 = 1, … , 𝑛 and that Lfdr𝑖 is known.
Recall that Theorem 8.1 established that optimal decision rules reject hypotheses with small
values of the Lfdr𝑖. However, the exact cutoff value depends on the statistical goal. Sun and
Cai (2007) proposed a procedure to set this cutoff in a data-driven way so that the resulting
procedure controls the false discovery rate Eq. 8.18.

Theorem 8.2 (Oracle local false discovery procedure.). Let 𝛼 ∈ (0, 1) be fixed. Suppose we
are testing 𝑛 hypotheses under the two-groups model, and the local false discovery rate of the
𝑖-th hypothesis is equal to Lfdr𝑖.

1. Let Lfdr(𝑖) be the 𝑖-th order statistic of Lfdr1, … ,Lfdr1, sorted from smallest to largest.
To be more expicit, Lfdr(𝑖) are such that:

Lfdr(1) ≤ Lfdr(2) ≤ … ≤ Lfdr(𝑛).

2. Let

𝑘∗ = max{𝑘 ∈ ℕ≥1 ∶ 1
𝑘

𝑘
∑
𝑖=1

Lfdr(𝑖) ≤ 𝛼} ,

with the understanding that max ∅ = 0.

3. If 𝑘∗ ≥ 1, reject all hypotheses with Lfdr𝑖 ≤ Lfdr(𝑘∗), else reject no hypothesis.

Then the FDR is controlled at level 𝛼, i,e., FDR ≤ 𝛼.

Proof. We will argue conditionally on Z. Notice that 𝑅 = 𝑘∗ by definition and also that 𝑘∗ is
measurable as a function of Z.

It will also be helpful to note the following:

𝑘∗

∑
𝑖=1

Lfdr(𝑖) =
𝑛

∑
𝑖=1

Lfdr(𝑖)1(𝑡𝑖(𝐙) = 1),
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the reason being that we reject the 𝑘∗ hypotheses with the smallest Lfdr(𝑖).

Next we will argue conditionally on Z.

𝔼 [FDP ∣ 𝐙] = 𝔼 [ 1
𝑘∗

𝑘∗

∑
𝑖=1

1(𝐻𝑖 = 0)1(𝑡𝑖(𝐙) = 1) ∣ 𝐙]

= 1
𝑘∗

𝑛
∑
𝑖=1

Lfdr𝑖1(𝑡𝑖(𝐙) = 1)

= 1
𝑘∗

𝑘∗

∑
𝑖=1

Lfdr(𝑖) ≤ 𝛼.

The last inequality follows by construction. Hence, by iterated expectation, FDR ≤ 𝛼.

We note that the above argument holds in finite-sample only when Lfdr𝑖 is known exactly. If
we implemented the procedure with empirical Bayes estimates of the local false discovery rates,
as in Section 8.3.2, then in general control will only be asymptotic.

8.4.2 Controlling the FDR with the Benjamini-Hochberg procedure

Theorem 8.3 (Benjamini and Hochberg (1995)). Let ℋ0 ⊂ {1, … , 𝑛} be the (deterministic)
index set of null hypotheses. Suppose that 𝐏 = (𝑃1, … , 𝑃𝑛) are valid p-values that are uniformly
distributed for 𝑖 ∈ ℋ0, and furthermore suppose that all p-values are jointly independent.

Then the BH procedure (Definition 8.4) controls the FDR at level 𝛼.

This result is not the most general. The BH procedure also has some guarantees under depen-
dence among the p-values, see Benjamini and Yekutieli (2001).

We will provide two proofs.

8.4.2.1 Optional stopping proof

Proof. In analogy to 𝑉 in Eq. 8.4 and 𝑅 in Eq. 8.3, we define the false discoveries, resp. total
discoveries, when rejecting all hypotheses with p-value ≤ 𝛾, that is:

𝑉 (𝛾) ∶= ∑
𝑖∈ℋ0

1(𝑃𝑖 ≤ 𝛾), 𝑅(𝛾) ∶=
𝑛

∑
𝑖=1

1(𝑃𝑖 ≤ 𝛾).

Note that under the above representation, we have that the false discoveries 𝑉 of BH are equal
to 𝑉 ( ̂𝛾∗), and similarly the total discoveries 𝑅 of BH are equal to 𝑅( ̂𝛾∗).
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By definition of the BH procedure in Definition 8.4, we may also verify that:3

m̂FDR( ̂𝛾∗) = 𝛼.

Then:

FDRBH = 𝔼 [ 𝑉 ( ̂𝛾∗)
max {𝑅( ̂𝛾∗), 1}]

= 𝔼 [𝑉 ( ̂𝛾∗)
̂𝛾∗

̂𝛾∗

max {𝑅( ̂𝛾∗), 1}]

= 𝔼 [𝑉 ( ̂𝛾∗)
𝑛 ̂𝛾∗ m̂FDR(( ̂𝛾∗))]

= 𝛼
𝑛𝔼 [𝑉 ( ̂𝛾∗)

̂𝛾∗ ] .

Next we define the filtration with 𝑠 ∈ (0, 1]

ℱ𝑠 = 𝜎 (1(𝑃𝑖 ≤ 𝛾), 𝛾 ∈ [𝑠, 1], 𝑖 = 1 … , 𝑛) ,

where 𝜎(⋅) denotes the 𝜎-algebra generated by the random variable. This is a reverse filtration
since ℱ𝑠 ⊂ ℱ𝑠′ for 𝑠′ < 𝑠.
Let us note the following. For 𝑖 ∈ ℋ0 and for 𝛾 ∈ (0, 𝑠):

𝔼 [1(𝑃𝑖 ≤ 𝛾) ∣ 1(𝑃𝑖 ≤ 𝑠)] = 𝛾
𝑠 1(𝑃𝑖 ≤ 𝑠).

Hence: 𝔼 [1(𝑃𝑖 ≤ 𝛾) ∣ ℱ𝑠] = 𝛾
𝑠 1(𝑃𝑖 ≤ 𝑠). By linearity of conditional expectation:

𝔼 [𝑉 (𝛾)
𝛾 ∣ ℱ𝑠] = 𝑉 (𝑠)

𝑠 ,

hence 𝑉 (𝛾)/𝛾 is a reverse-time martingale with respect to the filtration (ℱ)𝑠. Furthermore,
one can show that ̂𝛾∗ is a (reverse-time) stopping time with respect to that filtration. Hence:

𝔼 [𝑉 ( ̂𝛾∗)
̂𝛾∗ ] = 𝔼 [𝑉 (1)

1 ] = 𝑛0.

Hence:
FDRBH = 𝑛0

𝑛 𝛼 ≤ 𝛼.

3Why is that? The reason is that m̂FDR(⋅) is right-continuous, piecewise linear and increasing on each segment
of linearity, and m̂FDR(0) = 0, m̂FDR(1) = 1.
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We next present an alternative proof based on a famous leave-one-out argument that appears
in Ferreira and Zwinderman (2006); also see A. Li and Barber (2019) for an application of the
technique to multiple testing with side-information. Before stating the proof, we first write
one more equivalent representation of the BH procedure, which is the one originally presented
by Benjamini and Hochberg (1995).

Definition 8.5 (The Benjamini-Hochberg procedure (step-up interpretation)).

1. Let 𝑃(𝑖) be the 𝑖-th order statistic of the p-values 𝑃1, … , 𝑃𝑛, sorted from smallest to
largest.

2. Let
𝑘∗

𝐵𝐻 ∶= max{𝑘 ∈ {1, … , 𝑛} ∶ 𝑃(𝑘) ≤ 𝛼𝑘
𝑛 } ,

with the convention max ∅ = 0.
3. Reject the hypotheses corresponding to the 𝑘∗

𝐵𝐻 smallest p-values.

Exercise 8.1 (Proof of BH equivalence (Lemma 1 in Storey, Taylor, and Siegmund (2004))).
Prove that the procedure in Definition 8.5 is equivalent to the procedure in Definition 8.4 in
the sense that they make the same rejections.

Hint: Suppose there are no ties, then m̂FDR(𝑃(𝑘)) = 𝑛𝑃(𝑘)
𝑘 .

With the representation of BH in Definition 8.5 in-hand, we can proceed with the proof for
the BH procedure.

Proof. Our strategy is the following. Write:

FDP = 𝑉
max {𝑅, 1} = ∑

𝑖∈ℋ0

1(𝐻𝑖 rejected)
max {𝑅, 1} .

Below we will prove that for any 𝑖 ∈ ℋ0:

𝔼 [1(𝐻𝑖 rejected)
max {𝑅, 1} ] = 𝛼

𝑛. (8.19)

Hence:
FDR = 𝔼 [FDP] = 𝑛0

𝑛 𝛼 ≤ 𝛼.

Let us turn to Eq. 8.19. Fix 𝑖 ∈ ℋ0. It is first useful to make the following observation.
𝑅 = 𝑘∗

𝐵𝐻, and:

𝐻𝑖 rejected ⟺ 𝑃𝑖 ≤ 𝛼𝑘∗
𝐵𝐻
𝑛 .
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Now here comes the key trick: a leave-one-out argument. Define:

𝐏𝑖→0 = (𝑃1, … , 𝑃𝑖−1, 0, 𝑃𝑖+1, … , 𝑃𝑛),

that is, we replace 𝑃𝑖 by 0 in the p-value vector P. Then let 𝑘∗,𝑖
𝐵𝐻 ≥ 1 be the number of

rejection of BH applied to 𝐏𝑖→0.

We make the following observation:

𝐻𝑖 rejected ⟹ 𝑘∗
𝐵𝐻 = 𝑘∗,𝑖

𝐵𝐻. (8.20)

Why? Well, by decreasing p-values, we can only increase the number of discoveries, so that
𝑘∗

𝐵𝐻 ≤ 𝑘∗,𝑖
𝐵𝐻. On the other hand, since 𝐻𝑖 is rejected, 𝑖 must be among the 𝑘∗

𝐵𝐻 small-
est p-values. Hence by replacing 𝑃𝑖 by 0, we are not changing the largest 𝑛 − 𝑘 p-values
𝑃(𝑘∗

𝐵𝐻+1), … , 𝑃(𝑛). Since these were not rejected to begin with, it means that,

𝑃(𝑗) > 𝛼𝑗
𝑛 for all 𝑗 = 𝑘∗

𝐵𝐻 + 1, … , 𝑛,

and this remains true after replacing 𝑃𝑖 by 0.
Eq. 8.20 now in fact implies the following:

1(𝐻𝑖 rejected)
max {𝑅, 1} =

1 (𝑃𝑖 ≤ 𝛼𝑘∗
𝐵𝐻
𝑛 )

max {𝑘∗
𝐵𝐻, 1} =

1 (𝑃𝑖 ≤ 𝛼𝑘∗,𝑖
𝐵𝐻
𝑛 )

𝑘∗,𝑖
𝐵𝐻

Notice that 𝑘∗,𝑖
𝐵𝐻 is 𝐏𝑖→0 measurable, and that 𝑃𝑖 is independent of 𝐏𝑖→0. Hence:

𝔼 [1(𝐻𝑖 rejected)
max {𝑅, 1} ] = 𝔼 ⎡⎢

⎣
𝔼 ⎡⎢

⎣

1 (𝑃𝑖 ≤ 𝛼𝑘∗,𝑖
𝐵𝐻
𝑛 )

𝑘∗,𝑖
𝐵𝐻

∣𝐏𝑖→0
⎤⎥
⎦

⎤⎥
⎦

= 𝔼 [ 1
𝑘∗,𝑖

𝐵𝐻

𝛼𝑘∗,𝑖
𝐵𝐻
𝑛 ] = 𝛼

𝑛.

8.5 Multiple testing with side-information

We now turn to a further demonstration of how modern large-scale inference presents us with
opportunities that were not available previously. We study the problem of multiple testing
with side-information. That is, we assume that for the 𝑖-th hypothesis, we do not only observe
a p-value 𝑃𝑖, but also a covariate 𝑋𝑖 ∈ 𝒳, for some space 𝒳.4

4The setting we consider is analogous to the setting of empirical Bayes shrinkage with side-information that
we studied in Section 4.3 in Chapter 4.
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Throughout this section we make the following assumption, following e.g., Bourgon, Gentle-
man, and Huber (2010), Ignatiadis, Klaus, Zaugg, and Huber (2016), Boca and Leek (2018):

𝑃𝑖 is independent of 𝑋𝑖 for all 𝑖 ∈ ℋ0, (8.21)

where as before we denote by ℋ0 ⊂ {1, … , 𝑛} the subset of null hypotheses.

Assumption Eq. 8.21 guarantees that 𝑋𝑖 does not influence the calibrated null distribution of
the p-values. To have potential benefits in terms of power from the side-information 𝑋𝑖, it is
important that 𝑋𝑖 is associated with the power of the p-value under the alternative, or with
the prior probability of the hypothesing being null. If this is the case, then multiple testing
procedures may gain substantial power by ordering hypotheses not only based on the p-values,
but also by accounting for the side-information.

We formalize this idea with a probabilistic model in the next section; later we will derive
multiple testing procedures with type-I error control under Eq. 8.21.

8.5.1 The conditional two-groups model

Our goal in this section is to consider a generalization of the two-groups model in Eq. 8.12 that
also accounts for side-information 𝑋𝑖. This model, which we call the conditional two-groups
model has been considered by several authors, including Ferkingstad et al. (2008), Scott et
al. (2015), Ignatiadis, Klaus, Zaugg, and Huber (2016), Xia, Zhang, Zou, and Tse (2017),
Boca and Leek (2018), Lei and Fithian (2018), Cao, Chen, and Zhang (2022), Deb, Saha,
Guntuboyina, and Sen (2022).

𝑋𝑖 ∼ ℙ𝑋

𝐻𝑖 ∣ 𝑋𝑖 ∼ Bernoulli(1 − 𝜋0(𝑋𝑖)),
𝑃𝑖 ∣ 𝑋𝑖, 𝐻𝑖 = 0 ∼ 𝑈[0, 1],
𝑃𝑖 ∣ 𝑋𝑖, 𝐻𝑖 = 1 ∼ 𝐹alt(⋅ ∣ 𝑋𝑖).

(8.22)

Here ℙ𝑋 denotes the distribution of covariates 𝑋𝑖 which we do not further model. Compared
to Eq. 8.12, the key new modeling assumptions are that:

1. The probability of the 𝑖-th hypothesis being null, 𝜋0(𝑥) = ℙ [𝐻𝑖 = 0 ∣ 𝑋𝑖 = 𝑥], can be a
function of 𝑥.

2. The alternative distribution 𝐹alt(⋅ ∣ 𝑋𝑖 = 𝑥) can also be a function of 𝑥.

In view of Eq. 8.21, the null distribution of 𝑃𝑖 remains uniform.

Hence the conditional two-groups model in Eq. 8.22 captures our desiderata for modeling p-
values in the presence of side-information 𝑋𝑖. If the model Eq. 8.22 is known (and assuming
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independence across 𝑖 for simplicity), then one can define the local false discovery rate Eq. 8.9
as:

Lfdr𝑖 ∶= ℙ [𝐻𝑖 = 0 ∣ 𝑃𝑖, 𝑋𝑖] . (8.23)

The local false discovery rates can then be used to (asymptotically) control the false discovery
rate using the procedure of Section 8.4.1.

8.5.2 Multiple testing with (cross)-weighting: Independent Hypothesis Weighting

Our goal now is to develop a procedure that can account for the side-information in a data-
driven way, but nevertheless comes with finite-sample type-I error guarantees. Our approach
will be based on multiple testing weights.5

The general idea of multiple testing with weights is the following. Suppose that not all hy-
potheses are exchangeable a-priori. Then perhaps we may seek to prioritize some hypotheses
more than others. Let us express such prioritization through deterministic weights 𝑤𝑖, i.e.,
fixed numbers 𝑤𝑖 > 0 such that ∑𝑛

𝑖=1 𝑤𝑖 = 𝑛. Then, for many commonly used multiple test-
ing procedures (see Genovese, Roeder, and Wasserman (2006)), one may apply the multiple
testing procedure to 𝑃𝑖/𝑤𝑖 instead of 𝑃𝑖. Hence, if 𝑤𝑖 > 1, then it is easier to reject the 𝑖-th
hypothesis, and if 𝑤𝑖 < 1, then it is more difficult.

As a concrete example, we consider the weighted Bonferroni procedure. Given 𝑛 p-values
𝑃1, … , 𝑃𝑛, weights 𝑤1, … , 𝑤𝑛, and nominal level 𝛼, the weighted Bonferroni procedure takes
the following form:

Reject 𝐻𝑖 ⟺ 𝑃𝑖
𝑤𝑖

≤ 𝛼
𝑛 ⟺ 𝑃𝑖 ≤ 𝛼𝑤𝑖

𝑛 .

It is immediate to show that this procedure controls the FWER at level 𝛼:

FWER = ℙ [𝑉 ≥ 1] ≤ 𝔼 [𝑉 ] = ∑
𝑖∈ℋ0

𝔼 [1(𝑃𝑖 ≤ 𝛼𝑤𝑖/𝑛)] ≤ ∑
𝑖∈ℋ0

𝛼𝑤𝑖
𝑛 ≤ 𝛼,

where in the last step we used the fact that:

∑
𝑖∈ℋ0

𝑤𝑖 ≤
𝑛

∑
𝑖=1

𝑤𝑖 = 𝑛.

The above argument treated the weights as deterministic numbers.6 It turns out, however, that
in the presence of side-information, it is possible to construct data-driven weights. That is,
one can peek at the p-values to learn weights, yet control type-I error. This is possible through

5Lei and Fithian (2018) propose an alternative approach based on knockoff masking for control of the false
discovery rate.

6Quoting Genovese, Roeder, and Wasserman (2006): “Whatever information one uses to construct p-value
weights, the weight assignment remains a guess. This guess is to be made a priori, that is before seeing the
p-values.”
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cross-weighting, introduced in Ignatiadis, Klaus, Zaugg, and Huber (2016) and Ignatiadis and
Huber (2021):

1. Partition {1, … , 𝑚} into 𝐾 disjoint folds 𝐼1, … , 𝐼𝐾.
2. For all ℓ ∈ {1, … , 𝐾}, learn a potentially unnormalized weighting function 𝑊 −ℓ(⋅) ∶ 𝒳 →

ℝ+ as a function of all covariates and the p-values in the other folds, i.e,

𝑊 −ℓ(⋅) = 𝑊 −ℓ(⋅ ; (𝑋𝑖 ∶ 𝑖 ∈ 𝐼ℓ), ((𝑋𝑖, 𝑃𝑖) ∶ 𝑖 ∈ {1, … , 𝑛} \𝐼ℓ)).

3. For ℓ ∈ {1, … , 𝐾} and for all 𝑖 ∈ 𝐼ℓ, assign data-driven weights as follows:

𝑊𝑖 = #𝐼ℓ ⋅ 𝑊 −ℓ(𝑋𝑖)/ ∑
𝑗∈𝐼ℓ

𝑊 −ℓ(𝑋𝑗).

4. Apply a weighted multiple testing procedure (e.g., Bonferroni or Benjamini-Hochberg)
with p-values 𝑃𝑖 and weights 𝑊𝑖.

The above algorithm is called IHW (Independent Hypothesis Weighting). The second step can
be implemented e.g., by positing the conditional two-groups model Eq. 8.22, estimating 𝜋0(𝑥)
and 𝐹alt(⋅ ∣ 𝑥) and learning the optimal weights under the estimated model (see Ignatiadis
and Huber (2021) for details). The crucial part however is that Eq. 8.22 along with any
additional modeling assumptions made during the estimation step are only treated as working
assumptions, i.e., the type-I error control guarantees do not depend on these assumptions.

We prove the simplest example of a type-I error guarantee in the case of IHW-Bonferroni (that
is, IHW, with weighted Bonferroni in the last step).

Theorem 8.4 (IHW-Bonferroni controls the FWER). Suppose all pairs (𝑃𝑖, 𝑋𝑖) are jointly
independent and that 𝑃𝑖 ∼ 𝑈[0, 1] for 𝑖 ∈ ℋ0. Furthermore, suppose that Eq. 8.21 holds and
that the fold assignment 𝐼1, … , 𝐼𝐾 is deterministic (or independent of {(𝑃𝑖, 𝑋𝑖) ∶ 𝑖 ∈ {1, … , 𝑛}}).
Then, the IHW-Bonferroni procedure controls the FWER.

Proof. It will suffice to note the following two properties of the data-driven weights. First, by
construction:

∑
𝑖∈𝐼ℓ

𝑊𝑖 = #𝐼ℓ,

for all ℓ ∈ {1, … , 𝐾}. Hence, since the folds form a partition of {1, … , 𝑛}, it follows that:
𝑛

∑
𝑖=1

𝑊𝑖 = 𝑛. (8.24)

Next, fix 𝑖 ∈ ℋ0. Under our independence assumption it holds that 𝑃𝑖 is independent of

𝒪𝑖 ∶= {(𝑃𝑗 ∶ 𝑗 ∈ {1, … , 𝑛} \ {𝑖}), (𝑋𝑖 ∶ 𝑖 ∈ {1, … , 𝑛})} .
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By cross-weighting, 𝑊𝑖 is a function of 𝒪𝑖, and so, 𝑊𝑖 is independent of 𝑃𝑖.

Hence:
ℙ [𝑃𝑖 ≤ 𝛼𝑊𝑖

𝑛 ] = 𝔼 [ℙ [𝑃𝑖 ≤ 𝛼𝑊𝑖
𝑛 ∣ 𝑊𝑖]] ≤ 𝔼 [𝛼𝑊𝑖

𝑛 ] .

We conclude by arguing as in the case with deterministic weights.

FWER ≤ ∑
𝑖∈ℋ0

𝔼 [1(𝑃𝑖 ≤ 𝛼𝑊𝑖/𝑛)] ≤ ∑
𝑖∈ℋ0

𝔼 [𝛼𝑊𝑖
𝑛 ] ≤ 𝛼

𝑛𝔼 [
𝑛

∑
𝑖=1

𝑊𝑖] = 𝛼.

In the last step we used the fact that the weights are almost surely normalized by Eq. 8.24.

8.6 Bibliographic remarks

Bradley Efron (2010) is a beautiful monograph on the connection between empirical Bayes
and multiple testing and elaborates in a lot more detail on several points made in this chapter.
Stephens (2016) makes a very convincing argument for the new opportunies presented by
multiple testing.
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9 Suggested papers for presentation

9.1 Methodological papers

1. Koenker and Mizera (2014): a long awaited paper that points out that nonparametric
maximum likelihood is tractable

2. McAuliffe, Blei, and Jordan (2006), and Bradley Efron (2016) present modeling strate-
gies for flexibly modeling the prior and provide an alternative e.g., to nonparametric
maximum likelihood.

3. Banerjee, Liu, Mukherjee, and Sun (2021), Banerjee, Fu, James, and Sun (2021) use ker-
nelized Stein discrepancies for optimal shrinkage estimation via score-based f-modeling.

4. Ignatiadis, Saha, Sun, and Muralidharan (2021) propose a method for near-optimal
empirical Bayes shrinkage when both the likelihood and the prior are unknown.

5. Gu and Koenker (2023) study how empirical Bayes can be used for the ranking problem

6. Wang and Stephens (2021), and Zhong, Su, and Fan (2022) develop empirical Bayes
methods for matrix factorizations.

7. Kim, Wang, Carbonetto, and Stephens (2022) considers connections between empirical
Bayes and penalized regression.

9.2 Application papers

1. Genomics: Empirical Bayes has been highly influential in genomics. Several very com-
monly used methods address the problem of differential gene expression:

a. Smyth (2004) for microarray data (limma)
b. Love, Huber, and Anders (2014) for bulk RNAseq data (DESeq2)
c. Liu et al. (2022) for single-cell RNAseq data

2. Astronomy: Bovy, Hogg, and Roweis (2011)
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