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Setup box3

Model I: We observe (i = 1, . . . , n)

Xi
iid⇠PX

µi | Xi ⇠ N (m(Xi ), A)

Zi | µi ⇠ N
�

µi , �2
�

,

where m(·) : X ! R and A > 0
unknown, �2 > 0 known.

Goal: Estimate µi by µ̂i s.t.
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A ⇡ �2: Convex combination
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Benchmark: The Bayes rule Empirical Bayes with Cross-Fitting

MovieLens [2] data analysisa b c

B=200 B=500
Unbiased 223.9 (± 16.8) 0.098 (± 0.032)
XGBoost 0.145 (± 0.004) 0.183 (± 0.030)
SURE 0.061 (± 0.002) 0.064 (± 0.018)
EBCF 0.055 (± 0.002) 0.052 (± 0.012)

Table 1: EB analysis of the Movielens dataset
for prediction of average movie rating. a)
Mean-squared error n�1

P

n

i=1(µ̂i

� ˜Z
i

)

2 of 4 es-
timators for the Movielens dataset (where ˜Z

i

is
the average rating computed from the heldout data
with 90% of users)

All Sci-Fi
& Horror

Unbiased 0.098 0.098

(± 0.005) (± 0.032)
XGBoost 0.150 0.210

(± 0.005) (± 0.036)
SURE 0.061 0.064

(± 0.002) (± 0.018)
EBCF 0.055 0.051

(± 0.002) (± 0.012)

Communities and Crimes unnormalized data from the UCI repository [Dua and Graff, 2017]: The
dataset provides information about the number of crimes in multiple US communities as compiled
by the FBI Uniform Crime Reporting program in 1995. Our task is to predict the non-violent crime
rate p

i

of community i, defined as p
i

:= Crimes in community i/Population i, for each of n = 2118

communities7. We observe a dataset in which the population of each community is down-sampled to
B = 200 as follows:

C
i

⇠ Hypergeometric(B, Crimes in community i, Population i)

Our goal then is to predict p
i

based on C
i

and covariates X
i

2 R74 which include all numeric
predictive covariates in the UCI data set description (after removing covariates with missing entries)
and comprise features derived from Census and law enforcement data, such as percentage of people
that are employed and percentage of police officers assigned to drug units. We note that the hypergeo-
metric subsampling makes the estimation task harder and also provides us with pseudo ground truth
p

i

; cf. Wager [2015] for further motivation of such down-sampling.

The problem may be cast into the setting of this paper by defining Z
i

:=

p

C
i

/B. Then, by a variance
stabilizing argument it follows that Z

i

⇠̇
�p

p
i

, 1/(4 · B)

�

and we may apply the same methods as
in the preceding examples to estimate µ

i

:=

p
p

i

by µ̂
i

. After transforming the estimates back to the
original scale through p̂

i

= µ̂2
i

, we report the error
P

n

i=1(pi

� p̂
i

)

2/n, where n is the number of
communities analyzed.

Table 1 shows the results of this analysis, as well as the same analysis repeated for B = 500. We
observe that also in this example, EBCF outperforms the other methods.

6 Discussion

Empirical Bayes is a powerful framework for pooling information across many experiments, and
improve the precision of our inference about each experiment on its own [Efron, 2010, Robbins,
1964]. Existing empirical Bayes methods, however, do not allow the analyst to leverage covariate
information unless they assume a rigid parametric model as in Fay and Herriot [1979], or are willing to
commit to a specific end-to-end estimation strategy as in, e.g., Opsomer et al. [2008]. In contrast, the
approach proposed here allows the analyst to perform covariate-powered empirical Bayes estimation
on the basis of any black-box predictive model, and has strong formal properties whether or not the
model (1) used to motivate our procedure is well specified. Our approach may be extended in future
work by considering extensions to (1), such as covariate-based modulation of the prior variance, i.e.,
µ

i

�

� X
i

⇠ N (m(X
i

), A(X
i

)). The working assumption of a normal prior could also be relaxed to
heavy-tailed priors or priors with a point mass at zero.

The prevalence of settings where we need to analyze results from many loosely related experiments
seems only destined to grow, and we believe that empirical Bayes methods that allow for various

7We filter communities with a missing number of non-violent crimes
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Figure 3: EB analysis of the Movielens dataset for prediction of average movie rating. a) Mean-
squared error (MSE) n�1

P

n

i=1(µ̂i

� ˜Z
i

)

2
(± 2 standard errors of the MSE ) of four estimators for

the Movielens dataset (where ˜Z
i

is the average rating computed from the heldout data with 90% of
users) for all movies, as well as the subset of movies that are classified as both Horror and Sci-Fi.
b) LOESS smooth of mean squared error across all movies against the rank of N

i

, where N
i

is the
number of users that rated movie i in the training set. c) Deviations of EBCF (empirical Bayes with
cross-fitting) and SURE (Stein’s unbiased risk estimate) predictions from the unbiased estimator Z

i

as a function of N
i

for all Horror & Sci-Fi movies. We also show the “true” errors ˜Z
i

� Z
i

.

b, c), when A > 0, the mean squared error of XGBoost is lower bounded by A, even under perfect
prediction of m(·). In contrast, EBCF always improves with n by leveraging the improved predictions
of XGBoost, and outperforms all other estimators, even in the case A = 0 which corresponds to
nonparametric regression.

MovieLens data [Harper and Konstan, 2016]: Here we elaborate on the example from the introduc-
tion which aims to predict the average movie rating given ratings from a finite number of users. The
MovieLens dataset consists of approximately 20 million ratings in {0, 0.5, . . . , 5} from 138,000 users
applied to 27,000 movies. To demonstrate the applicability of our approach, when model (1) does not
necessarily hold, we randomly choose 10% of all users and attempt to estimate the movie ratings
from them. This corresponds to having a much smaller dataset. We then summarize the i-th movie,
by Z

i

, the average of the N
i

users (in the training dataset) that rated it. We further have covariates
X

i

2 R20 that include N
i

, the year the movie was released, as well as indicators of 18 genres to
which the movie may belong (action, comedy, etc.). We posit that Z

i

| µ
i

, X
i

⇠ (µ
i

, �2/N
i

) and
want to estimate µ

i

.5 As our pseudo ground truth for movie i we use ˜Z
i

, the average movie rating
among the remaining 90% of users and then report the error

P

n

i=1(
˜Z

i

� µ̂
i

)

2/n, where n is the total
number of movies.6

The average error across all movies is shown in Figure 3a; here the XGBoost predictor performs worst,
followed by the unbiased estimator Z

i

. Instead, the two EB approaches perform a lot better with
EBCF scoring the lowest error. The same is true when comparing only the 253 movies with genre
tags for both horror and Sci-Fi. In panel b), we show the relationship between the error (

˜Z
i

� µ̂
i

)

2

and the rank of the per-movie number of reviews N
i

using a LOESS smoother [Cleveland and Devlin,
1988]. We observe that the 3 estimators that use Z

i

, do a perfect job for large N
i

and a worse job
for smaller N

i

. In particular, the error of Z
i

blows up at small N
i

, and the error gains of EBCF
occur precisely at low sample sizes. On the other hand, the XGBoost prediction has an error that
does not get reduced by larger N , but is competitive at small N . Panel c) shows µ̂

i

� Z
i

for the 253
predictions of EBCF and SURE for horror/Sci-Fi movies as a function of the rank of N

i

. For large
N

i

, again both EB estimators agree with the unbiased estimator. However, for small N
i

, it appears
that most Sci-Fi/Horror movies are worse than the average movie, and EB without covariates tries to
correct for this by assigning them a higher rating. Conversely, EBCF automatically realizes that these
movies tend to get low ratings, and pulls the unbiased estimator Z

i

further down.

Communities and Crimes data from the UCI repository [Dua and Graff, 2017, Redmond and Baveja,
2002]: The dataset provides information about the number of crimes in multiple US communities

5We replace �2 by �̂2 .
= 0.94, the average of the sample standard deviations across all movies.

6We filter movies and keep only movies with at least 3 ratings in the training set and 11 in the validation set.
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Communities and Crimes unnormalized data from the UCI repository [Dua and Graff, 2017]: The
dataset provides information about the number of crimes in multiple US communities as compiled
by the FBI Uniform Crime Reporting program in 1995. Our task is to predict the non-violent crime
rate p
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of community i, defined as p
i

:= Crimes in community i/Population i, for each of n = 2118

communities7. We observe a dataset in which the population of each community is down-sampled to
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based on C
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and comprise features derived from Census and law enforcement data, such as percentage of people
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Table 1 shows the results of this analysis, as well as the same analysis repeated for B = 500. We
observe that also in this example, EBCF outperforms the other methods.

6 Discussion

Empirical Bayes is a powerful framework for pooling information across many experiments, and
improve the precision of our inference about each experiment on its own [Efron, 2010, Robbins,
1964]. Existing empirical Bayes methods, however, do not allow the analyst to leverage covariate
information unless they assume a rigid parametric model as in Fay and Herriot [1979], or are willing to
commit to a specific end-to-end estimation strategy as in, e.g., Opsomer et al. [2008]. In contrast, the
approach proposed here allows the analyst to perform covariate-powered empirical Bayes estimation
on the basis of any black-box predictive model, and has strong formal properties whether or not the
model (1) used to motivate our procedure is well specified. Our approach may be extended in future
work by considering extensions to (1), such as covariate-based modulation of the prior variance, i.e.,
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b) LOESS smooth of mean squared error across all movies against the rank of N

i

, where N
i

is the
number of users that rated movie i in the training set. c) Deviations of EBCF (empirical Bayes with
cross-fitting) and SURE (Stein’s unbiased risk estimate) predictions from the unbiased estimator Z

i

as a function of N
i

for all Horror & Sci-Fi movies. We also show the “true” errors ˜Z
i

� Z
i

.

b, c), when A > 0, the mean squared error of XGBoost is lower bounded by A, even under perfect
prediction of m(·). In contrast, EBCF always improves with n by leveraging the improved predictions
of XGBoost, and outperforms all other estimators, even in the case A = 0 which corresponds to
nonparametric regression.

MovieLens data [Harper and Konstan, 2016]: Here we elaborate on the example from the introduc-
tion which aims to predict the average movie rating given ratings from a finite number of users. The
MovieLens dataset consists of approximately 20 million ratings in {0, 0.5, . . . , 5} from 138,000 users
applied to 27,000 movies. To demonstrate the applicability of our approach, when model (1) does not
necessarily hold, we randomly choose 10% of all users and attempt to estimate the movie ratings
from them. This corresponds to having a much smaller dataset. We then summarize the i-th movie,
by Z

i

, the average of the N
i

users (in the training dataset) that rated it. We further have covariates
X

i

2 R20 that include N
i

, the year the movie was released, as well as indicators of 18 genres to
which the movie may belong (action, comedy, etc.). We posit that Z

i

| µ
i

, X
i

⇠ (µ
i

, �2/N
i

) and
want to estimate µ

i

.5 As our pseudo ground truth for movie i we use ˜Z
i

, the average movie rating
among the remaining 90% of users and then report the error

P

n

i=1(
˜Z

i

� µ̂
i

)

2/n, where n is the total
number of movies.6

The average error across all movies is shown in Figure 3a; here the XGBoost predictor performs worst,
followed by the unbiased estimator Z

i

. Instead, the two EB approaches perform a lot better with
EBCF scoring the lowest error. The same is true when comparing only the 253 movies with genre
tags for both horror and Sci-Fi. In panel b), we show the relationship between the error (

˜Z
i

� µ̂
i

)

2

and the rank of the per-movie number of reviews N
i

using a LOESS smoother [Cleveland and Devlin,
1988]. We observe that the 3 estimators that use Z

i

, do a perfect job for large N
i

and a worse job
for smaller N

i

. In particular, the error of Z
i

blows up at small N
i

, and the error gains of EBCF
occur precisely at low sample sizes. On the other hand, the XGBoost prediction has an error that
does not get reduced by larger N , but is competitive at small N . Panel c) shows µ̂

i

� Z
i

for the 253
predictions of EBCF and SURE for horror/Sci-Fi movies as a function of the rank of N

i

. For large
N

i

, again both EB estimators agree with the unbiased estimator. However, for small N
i

, it appears
that most Sci-Fi/Horror movies are worse than the average movie, and EB without covariates tries to
correct for this by assigning them a higher rating. Conversely, EBCF automatically realizes that these
movies tend to get low ratings, and pulls the unbiased estimator Z

i

further down.

Communities and Crimes data from the UCI repository [Dua and Graff, 2017, Redmond and Baveja,
2002]: The dataset provides information about the number of crimes in multiple US communities

5We replace �2 by �̂2 .
= 0.94, the average of the sample standard deviations across all movies.

6We filter movies and keep only movies with at least 3 ratings in the training set and 11 in the validation set.
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Setup box3

Model I: We observe (i = 1, . . . ,m)

Xi
iid⇠PX

µi | Xi ⇠ N (m(Xi ), A)

Zi | µi ⇠ N
�

µi , �2
�

,

where m(·) : X ! R and A > 0
unknown, �2 > 0 known.

Goal: Estimate µi by µ̂i s.t.

1

n

n
X

i=1

E[(µi � µ̂i )
2] is small

This work

MovieLens 20M (Harper and Konstan [2016])

I 20 million ratings in {0, 0.5, . . . , 5} from 138,000 users
applied to 27,000 movies (n � 10000 after filtering).

I Keep 10% of users, calculate average rating Zi for each
movie based on Ni users.

I µi is “true” movie rating.

I
Xi includes Ni , year of release, genres.

I Posit that Zi | µi ,Xi ⇠ (µi , �2/Ni ).

I “Ground-truth”: e

Zi average movie rating based on
other 90% of users.

I Evaluation by mean-squared error:
Pn

i=1(
e

Zi � µ̂i )2/n

I (with XGBoost)

EBCF is minimax optimal

Misspecification results

I
Model II: Non-Gaussian, equal variances

(Xi , µi ,Zi ) ⇠ P(Xi ,µi ,Zi ), E [Zi | µi ,Xi ] = µi , Var [Zi | µi ,Xi ] = �2

I
Guarantees for EBCF in fold I2 (under bounded E

⇥
Z 4
i | µi ,Xi

⇤
, µi ):

1

|I2|
X

i2I2

E
h
(µi � µ̂EBCF

i )

2
i


8
<

:

�2

1
|I2|

X

i2I2

E
h
(µi � m̂I1(Xi ))

2
i
9
=

;+O

 
1p
|I2|

!

I
EBCF can be extended (with similar guarantees) to

Model III: Non-Gaussian, unequal variances

(Xi , µi ,Zi ) ⇠ P(Xi ,µi ,Zi ), E [Zi | µi ,Xi ] = µi , Var [Zi | µi ,Xi ] = �2
i

EBCF is robust to misspecification Resources

MovieLens 20M (Harper and Konstan [2016])

I 20 million ratings in {0, 0.5, . . . , 5} from 138,000 users
applied to 27,000 movies (n � 10, 000 after filtering).

I Keep 10% of users, calculate average rating Zi for each
movie based on Ni users.

I
Xi includes Ni , year of release, genres.

I µi is “true” movie rating.

I Posit that Zi | µi ,Xi ⇠ (µi , �2/Ni ).

I “Ground-truth”: e

Zi , the average movie rating based on
other 90% of users.

I Evaluation by mean-squared error:
Pn

i=1(
e

Zi � µ̂i )2/n

I (with XGBoost)

Minimax box3

I Model I: =) Xi
iid⇠PX , Zi | Xi ⇠ N

�

m(Xi ), A+ �2
�

I Minimax regression error over C ⇢ {f : X ! R}

MReg
n

�

C;A+ �2
�

:= inf
m̂n

max
m2C

Em,A



Z

(m̂n(x) � m(x))2 dPX (x)

�

I Minimax empirical Bayes excess risk [3] over C, with A > 0
fixed (but unknown)

MEB
n

�

C;A, �2
�

c:= inf
t̂n

max
m2C

�

Expected risk of t̂n � Bayes risk
 

I Theorem: For many C, e.g., Lipschitz class in Rd

MEB
n

�

C;A, �2
�

⇣ �4

(�2 + A)2
MReg

n

�

C;A+ �2
�

Empirical Bayes with Cross-Fitting (EBCF)

1. Form a partition of {1, . . . , n} into two folds I1 and I2.

2. Use observations in I1, to estimate the regression
m(x) = E [Zi | Xi = x ] by m̂I1(·).

3. Use observations in I2, to estimate A, through the formula

ÂI2 =

0

@

1

|I2|
X

i2I2

(m̂I1(Xi ) � Zi )
2 � �2

1

A

+

4. For i 2 I2, estimate µi by µ̂EBCF
i = t

⇤
m̂I1

,ÂI2

(Xi ,Zi ).

5. Repeat with folds I1 and I2 flipped.
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