

- ▶ 20 million ratings in {0, 0.5, ..., 5} from 138,000 users applied to 27,000 movies ($n \ge 10,000$ after filter
- \blacktriangleright Keep 10% of users, calculate average rating Z_i f movie based on N_i users.
- \blacktriangleright X_i includes N_i, year of release, genres.
- \blacktriangleright μ_i is "true" movie rating.
- Posit that $Z_i \mid \mu_i, X_i \sim (\mu_i, \sigma^2/N_i)$.
- "Ground-truth": \tilde{Z}_i , the average movie rating ba other 90% of users.
- Evaluation by mean-squared error: $\sum_{i=1}^{n} (\tilde{Z}_i \hat{\mu}_i)$

EBCF is minimax optimal

<u>Model I</u>: $\implies X_i \stackrel{\text{iid}}{\sim} \mathbb{P}^X, \quad Z_i \mid X_i \sim \mathcal{N}(m(X_i), A + \sigma^2)$ Minimax regression error over $C \subset \{f : \mathcal{X} \to \mathbb{R}\}$ $\mathfrak{M}_{n}^{\mathsf{Reg}}\left(\mathcal{C};A+\sigma^{2}\right):=\inf_{\hat{m}_{n}}\max_{m\in\mathcal{C}}\mathbb{E}_{m,A}\left[\int\left(\hat{m}_{n}(x)-m(x)\right)^{2}d\mathbb{P}^{X}(x)\right]$ Minimax empirical Bayes excess risk [3] over C, with A > 0fixed (but unknown) $\mathfrak{M}_{n}^{\mathsf{EB}}(\mathcal{C}; A, \sigma^{2}) := \inf_{\hat{t}_{n}} \max_{m \in \mathcal{C}} \{ \mathsf{Expected risk of } \hat{t}_{n} - \mathsf{Bayes risk} \}$ <u>Theorem</u>: For many C, e.g., Lipschitz class in \mathbb{R}^d $\mathfrak{M}_{n}^{\mathsf{EB}}\left(\mathcal{C};A,\sigma^{2}\right) \asymp \frac{\sigma^{4}}{\left(\sigma^{2}+A\right)^{2}} \mathfrak{M}_{n}^{\mathsf{Reg}}\left(\mathcal{C};A+\sigma^{2}\right)$

Benchmark: The Bayes rule

ering). $\sum_{i=1}^{n}$	$(\widetilde{Z}_i - i)$	$\hat{\mu}_i)^2/n$
tor each	All	Sci-Fi
		& Horror
$Z_i \rightarrow \text{Unbiased}$ ().098	0.098
$(\pm 0$	0.005)	(± 0.032)
$[1] \rightarrow XGBoost$ (0.150	0.210
(\pm)	0.005)	(± 0.036)
$[4] \longrightarrow SURE \qquad ($).061	0.064
ased on (\pm)	0.002)	(± 0.018)
This work \rightarrow EBCF 0	.055	0.051
(with XGBoost) (\pm (0.002)	(± 0.012)
$l_i)^{-}/n$		

EBCF is robust to misspecification

Model II: Non-Gaussian, equal variances $^{\mu_{i},Z_{i})}, \mathbb{E}[Z_{i} \mid \mu_{i},X_{i}] = \mu_{i}, Var[Z_{i} \mid \mu_{i},X_{i}] = \sigma^{2}$ Guarantees for EBCF in fold I_2 (under bounded $\mathbb{E}\left[Z_i^4 \mid \mu_i, X_i\right], \mu_i$): $\left[\left[\mathcal{F} \right]^{2} \right] \leq \left\{ \frac{\sigma^{2}}{\frac{1}{|I_{2}|} \sum_{i \in I} \mathbb{E} \left[\left(\mu_{i} - \hat{m}_{I_{1}}(X_{i}) \right)^{2} \right] \right\} + O\left(\frac{1}{\sqrt{|I_{2}|}} \right) \right\}$ EBCF can be extended (with similar guarantees) to

$$(X_i, \mu_i, Z_i) \sim \mathbb{P}^{(X_i, \mu_i)}$$

$$rac{1}{|I_2|} \sum_{i \in I_2} \mathbb{E} \left[(\mu_i - \hat{\mu}_i^{\mathsf{EBCF}}
ight]$$

Model III: Non-Gaussian, unequal variances

 $(X_i, \mu_i, Z_i) \sim \mathbb{P}^{(X_i, \mu_i, Z_i)}, \mathbb{E}[Z_i \mid \mu_i, X_i] = \mu_i, Var[Z_i \mid \mu_i, X_i] = \sigma_i^2$

35-794, 2016. 5(4):19, 2016. 35:1-20, 1964. I, 107(500):1465–1479, 2012.

Acknowledgments

This research was funded by a gift from Google.