Covariate-Powered Empirical Bayes Estimation
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Benchmark: The Bayes rule Empirical Bayes with Cross-Fitting
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where m(-) : X - R and A >0
unknown, o2 > 0 known.
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Goal: Estimate u; by [i; s.t.
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. For i € |5, estimate u; by (Xi, Z;).

1 <~ or
- ; (1 — 1i)°] is small . Repeat with folds /; and I, flipped.

MovielLens [2] data analysis
> 20 million ratings in {0,0.5,...,5} from 138,000 users

applied to 27,000 movies (n > 10,000 after filtering).
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EBCF is robust to misspecification Resources

EBCF is minimax optimal

Model I: = X;~PX, Z; | X; ~ N (m(X;), A+ o2)

Minimax regression error over C C {f : X — R}

[ alo) = m())? 47X ()

Minimax empirical Bayes excess risk [3] over C, with A > 0 1
fixed (but unknown) 1|

ME=S (C; A, 02)

Model II: Non-Gaussian, equal variances

(Xi7 i ZI) ~ IP)(XhMi’Zi)?

4, [Z,' | ,u,-,X,-] = U, Var [Z,' | ,u,-,X,-] — 0'2 Code availability

Software: https://github.com/nignatiadis/EBayes.|l

Reproducibility: https://github.com/nignatiadis/EBCrossFitPaper

Guarantees for EBCF in fold L (under bounded E |Z}' | ui, Xi| , pi):
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EBCF can be extended (with similar guarantees) to
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Theorem: For many C, e.g., Lipschitz class in R¢ | |
4 Model I1I: Non-Gaussian, unequal variances
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(Xi, pi, Zi) ~ IP)(XinUJiaZi)7

| Zi | piy Xil = pi, Var|Zi| pi, Xi] = 0,'2
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