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This talk

1. What is empirical Bayes (EB)?

2. What is EB with covariates?

3. What is our method and what are its statistical guarantees?



What is empirical Bayes? The setup

1. We care about point estimation of parameters corresponding
to units i = 1, . . . , n.

2. Motivated by classical statistical theory, we reduce
information about each unit to one number for which we
understand the sampling distribution, say:

Zi ∼ N
(
µi , σ

2
i

)
for all i

3. We look at all parameters µi simultaneously: Burden and
blessing of multiplicity

Empirical Bayes (Robbins [1956], Efron [2010]) presents a
principled approach for learning from others.



What is empirical Bayes? The “EB principle”

I “Let us use a mixed model, even if it might not be
appropriate” (van Houwelingen, 2014)

I ... to derive procedures with frequentist guarantees.
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Example of EB: James-Stein [1961], Efron-Morris [1973]

I Gaussian compound decision problem (known σ2):

Zi ∼ N
(
µi , σ

2
)

independently for i = 1, . . . , n

I “Posit” that µi
iid∼N (ν,A).

I The Bayes rule is: t∗(z) = E
[
µi
∣∣Zi = z

]
= A

σ2+A
z + σ2

σ2+A
ν

I Observe that marginally Zi ∼ N
(
ν, σ2 + A

)
so can estimate

ν by Z̄ and A by ÂJS.

I Estimate µi by estimated Bayes rule:

µ̂JSi =
ÂJS

σ2 + ÂJS

Zi +
σ2

σ2 + ÂJS

Z̄

I The James-Stein estimator has frequentist guarantees.



JS for predicting batting averages

I Efron and Morris [1975], Brown [2008]

I For player i , observe ABi at-bats and Hi hits during first half
of season.

I Goal: Predict batting average in second half of season.

I Hi ∼ Binomial(ABi , pi ) where pi true “skill” of player i .

I Then let:

Zi = arcsin

(√
Hi + 1/4

ABi + 1/2

)
∼̇ N

(
arcsin(

√
pi ),

1

4ABi

)
I Efron and Morris consider 18 players with 45 at-bats.

I Can then apply JS with σ2 = 1/(4 · 45) to estimate
arcsin(

√
pi ).

I Then transform estimates back.



Brown [2008] batting results

Brown [2008] considers around 500 players:

PREDICTION OF BATTING AVERAGES 133

TABLE 2
Values for half-season predictions for all batters of T̂SE∗, T̂SE∗

R and T̂WSE
∗

[as defined in (5.1),
below, and the discussion afterward]

All batters; T̂SE
∗

All batters; T̂SE
∗
R All batters; T̂WSE

∗

P for estimation 567 567 567
P for validation 499 499 499
Naive 1 1 1
Group’s mean 0.852 0.887 1.120 (0.7411)

EB(MM) 0.593 0.606 0.626
EB(ML) 0.902 0.925 0.607
NP EB 0.508 0.509 0.560
Harmonic prior 0.884 0.905 0.600
James–Stein 0.525 0.540 0.502

from season to season. It would also considerably outperform the naïve estimator
if one were to ignore first half behavior entirely, and just predict all batters to
perform according to the average of the first half of the preceding season.)

2. The best performing predictors in order are those corresponding to the non-
parametric empirical Bayes method, the James–Stein method, and the parametric
EB(MM) method. The performance of the parametric EB(ML) method and the true
(formal) Bayes harmonic prior method is mediocre. They perform about equally
poorly; indeed, the two estimators are numerically very similar, which is not sur-
prising if one looks closely at the motivation for each.

3a. There are two explanations for the relatively poor performance of the
EB(ML) and the HB estimators. First, Figure 3 contains the histogram for the val-
ues of {X1i}. Note that this histogram is not well matched to a normal distribution.
In fact, as suggested by the results in Table 1, it appears to be better modeled as a

FIG. 3. Histogram and box-plot for {X1i :N1i ≥ 11}.



Census data/ Small area estimation

Source: 2017 Small Area Health Insurance 
Estimates (SAHIE) Program

www.census.gov/programs-surveys/sahie.html

Estimated Uninsured Rates for the Population Under Age 65: 2017

Small Area Health Insurance Estimates

 

25.1 and above
20.1 to 25.0
15.1 to 20.0
10.1 to 15.0
10.0 and below
State

Percent uninsured
by county

Each i could be a:

I state

I commuting zone

I county

I city or town



Other application areas

I Genomics:
I Gene expression profiling (each i is a gene)
I Chemical compound screens (each i is a compound)

I AB testing:
I Average treatment effects of multiple experiments or multiple

treatment arms of the same experiment (Dimmery, Bakshy and
Sekhon [2019])

I Average treatment effects of one experiment on every
advertiser



Empirical Bayes with side-information

I Gaussian compound decision problem:

Zi ∼ N
(
µi , σ

2
)
, i = 1, . . . , n

I We know (Jiang and Cun-Hui Zhang [2009], Brown and
Greenshtein [2009]) how to estimate (µ1, . . . , µn) such that:

E
[
‖µ− µ̂‖2

]
is small

I What if we have side-information (covariates) Xi for each i ,
that may or may not be informative about µi?
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Examples of side-information

I Batting: pitcher or non-pitcher, salary, team

I Genes: Ontologies

I AB tests: Percentage change in auxiliary metrics (Coey and
Cunningham [2019])



Fay-Herriot model

I Census bureau in 1974

I Want to estimate per-capita income µi in small areas based
on sample average Zi .

I Covariates Xi : Per-capita income of whole county, value of
owner-occupied housing, average adjusted gross income from
older IRS returns

I Model:
µi | Xi ∼ N

(
X>i β, A

)
Zi | µi ∼ N

(
µi , σ

2
)

I Estimate β,A through method of moments

I Fay III, Robert E., and Roger A. Herriot. “Estimates of income for
small places: an application of James-Stein procedures to census
data.” (JASA 1979)



Desiderata for a covariate-powered method

1. Analysis that allows for any black-box ML method, rather than
tailored to specific predictor, e.g., linear regression as in Green
and Strawderman (1991), Tan (2016), Kou and Yang (2017).

2. When covariates are non-informative: Come with similar
guarantees as methods that do not use covariates.

3. When covariates are informative: Take advantage of
additional information!



EB model with covariates

For a function m(·) : X → R and A, σ2 > 0:

Xi ∼ PX

µi | Xi ∼ N (m(Xi ), A)

Zi | µi ∼ N
(
µi , σ

2
)

Em,A [µi | Xi = x , Zi = z ] =
A

σ2 + A
z +

σ2

σ2 + A
m(x)

Goals: First understand EB shrinkage when model is true, then
consider misspecification (for example deterministic µi ).
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The EB benchmark (Robbins [1964])

Xi ∼ PX , µi | Xi ∼ N (m(Xi ), A) , Zi | µi ∼ N
(
µi , σ

2
)
,

I We observe n i.i.d. pairs (Xi ,Zi ), not µi .

I The task is to construct a function t̂n(·, ·) : X × R→ R and
we will use it to estimate µn+1 by t̂n(Xn+1,Zn+1) for a future
draw (µn+1,Xn+1,Zn+1).

I Benchmark in terms of regret. For a function t : X × R→ R
define:

L(t;m,A) := Em,A

[
(t(Xn+1,Zn+1)− µn+1)2

]
− Aσ2

A + σ2

I We want E
[
L(t̂n;m,A)

]
to be small and close to 0.
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Minimax EB regret

I A known, σ2 > 0 known, regret incurred by not knowing m(·),
but only that m(·) ∈ C.

I Minimax expected regret:

MEB
n

(
C;A, σ2

)
:= inf

t̂n
max
m∈C

{
Em,A

[
L(t̂n;m,A)

]}
I We also have the minimax risk in the regression problem

where we observe Xi ∼ PX ,Zi | Xi ∼ N
(
m(Xi ),A + σ2

)
and

want to estimate m(·) w.r.t. L2(PX ):

MReg
n

(
C;A + σ2

)
:= inf

m̂n

max
m∈C

Em,A

[∫
(m̂n(x)−m(x))2 dPX

]
I Claim: EB Regret often satisfies

MEB
n

(
C;A, σ2

)
� σ4

(σ2 + A)2
MReg

n

(
C;A + σ2

)
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Minimax results: One example

I X = [0, 1]d with density f X such that η ≤ f X (u) ≤ 1/η,
η > 0.

I Lipschitz class:

Lip([0, 1]d , L) :=
{
m : [0, 1]d → R :

∣∣m(x)−m(x ′)
∣∣ ≤ L

∥∥x − x ′
∥∥
2

}
I Then (I., Wager 2019):

lim
n→∞

∣∣∣∣∣∣log
MEB

n

(
Lip([0, 1]d , L);A, σ2

)/ σ4

(σ2 + A)2
·

(
Ld
(
σ2 + A

)
n

) 2
2+d

∣∣∣∣∣∣
≤ CLip(d , η)



Minimax estimator: Known prior variance A

I Let m̂(·) achieve the minimax rate for estimating m(·) over C.

I Then the following plug-in estimator achieves the Empirical
Bayes minimax benchmark:

t∗m̂,A(x , z) =
A

σ2 + A
z +

σ2

σ2 + A
m̂(x)



Minimax estimator: Unknown prior variance A

What if A is unknown? Ansatz: Plug-in Â, m̂

t∗
m̂,Â

(x , z) =
Â

σ2 + Â
z +

σ2

σ2 + Â
m̂(x)

I Marginally Zi | Xi ∼ N
(
m(Xi ), σ

2 + A
)
.

I Idea 1: Estimate Var [Zi | Xi ] = σ2 + A to get Â + σ2 and
then Â.

I Idea 2: Say we use (deterministic) m̃(·) 6= m(·), then even if
we knew true A we would not want to use it, instead

Am̃ = E
[
(m̃(Xn+1)− Zn+1)2

]
−σ2 = A+E

[
(m̃(Xn+1)−m(Xn+1))2

]
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Sample-split EB

1. Form a partition of {1, . . . , n} into two folds I1 and I2.

2. Use observations in I1, to estimate the regression
m(x) = E [Zi | Xi = x ] by m̂I1(·).

3. Use observations in I2, to estimate A, through the formula:

ÂI2 =

 1

|I2|
∑
i∈I2

(m̂I1(Xi )− Zi )
2 − σ2


+

4. The estimated denoiser is then t̂EBCFn (·, ·) = t∗
m̂I1

,ÂI2

(·, ·).

Still achieves minimax rates without knowledge of A.
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A small simulation
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I Simulate from:

Xi ∼ U[0, 1]15

µi | Xi ∼ N (m(Xi ), A)

Zi | µi ∼ N
(
µi , σ

2
)

I m(x) = 10 sin(πx1x2) + 20(x3 − 1/2)2 + 10x4 + 5x5 [Friedman (1991)]

I σ2 = 4,A ∈ {0, 4, 9}
I m̂ cross-validated XGBoost



Empirical Bayes with Cross-Fitting (EBCF)

If we want to predict µ1, . . . , µn:

1. Form a partition of {1, . . . , n} into two folds I1 and I2.

2. Use observations in I1, to estimate the regression
m(x) = E [Zi | Xi = x ] by m̂I1(·).

3. Use observations in I2, to estimate A, through the formula:

ÂI2 =

 1

|I2|
∑
i∈I2

(m̂I1(Xi )− Zi )
2 − σ2


+

4. The estimated denoiser is then t̂EBCFn (·, ·) = t∗
m̂I1

,ÂI2

(·, ·).

5. Estimate µ̂EBCFi = t∗
m̂I1

,ÂI2

(Xi ,Zi ) for i ∈ I2

6. Repeat with folds I1 and I2 flipped.



James-Stein property

Assume indepedence and that:

Zi | Xi , µi ∼ N
(
µi , σ

2
)

Then if |I1| , |I2| ≥ 5:

1

n

n∑
i=1

E
[
(µi − µ̂EBCF

i )2 | X1:n, µ1:n

]
<

1

n

n∑
i=1

E
[
(µi − Zi )

2 | X1:n, µ1:n

]
= σ2
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Further misspecification result

Now only assume that (and 4th moment condition on Zi , bounds
on µi )

E [Zi | µi ,Xi ] = µi , Var [Zi | µi ,Xi ] = σ2

Then:

1

|I2|
∑
i∈I2

E
[
(µi − µ̂EBCF

i )2 | XI2 , µI2

]
≤ σ2 + O

(
1√
|I2|

)
1

|I2|
∑
i∈I2

E
[
(µi − µ̂EBCF

i )2 | XI2 , µI2

]
≤ 1

|I2|
∑
i∈I2

E
[
(µi − m̂I1(Xi ))

2 | XI2 , µI2

]

+ O

(
1√
|I2|

)
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Why does this work? SURE

I SURE: Stein’s Unbiased Risk Estimate (Stein [1981])

I We may write ÂI2 as:

ÂI2 =

(
1

|I2|
∑
i∈I2

(m̂I1(Xi )− Zi )
2 − σ2

)
+

⇐⇒ ÂI2 = argmin
A≥0

{SUREI2(A)} ,

SUREI2(A) :=
1

|I2|
∑
i∈I2

(
σ2 +

σ4

(A + σ2)2
(Zi − m̂I1(Xi ))2 − 2

σ4

A + σ2

)
.

I SURE satisfies:

E [SUREI2(A) | X1:n, µ1:n] =
1

|I2|
∑
i∈I2

E
[(
µi − t∗m̂I1

,A(Xi ,Zi )
)2
| X1:n, µ1:n

]



Heteroskedastic case

I In heteroskedastic setting, Var
[
Zi

∣∣Xi , µi
]

= σ2i .

I Then (following Xie, Kou, Brown [2012] in setting without
covariates): Consider estimators

t∗m,A(Xi ,Zi , σi ) =
A

σ2i + A
Zi +

σ2i
σ2i + A

m(x)

I Pick A again by cross-fitting and SURE:

ÂI2 = argmin
A≥0

{SUREI2(A)} ,

SUREI2(A) :=
1

|I2|
∑
i∈I2

(
σ2
i +

σ4
i

(A+ σ2
i )

2
(Zi − m̂I1(Xi ))

2 − 2
σ4
i

A+ σ2
i

)



MovieLens 20M (Harper and Konstan [2016])

I 20 million ratings in {0, 0.5, . . . , 5} from 138,000 users applied
to 27,000 movies.

I Keep 10% of users, calculate average rating Zi for each movie
based on Ni users.

I Xi include Ni , year of release, genres...

I Posit that Zi | µi ,Xi ∼ (µi , σ
2/Ni ).

I “Ground-truth”: Z̃i average movie rating based on other 90%

of users. Benchmark based on
∑n

i=1

(
Z̃i − µ̂i

)2
/n.

I Compare: Unbiased estimator Zi , XGBoost predictor, EB
without covariates (SURE) (Xie, Kou and Brown [2012]) and
EBCF with XGBoost.



MovieLens results
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MovieLens results
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Future work: Variance modulation

I So far, the covariates have been modulating the prior mean
E [µi | Xi = x ].

I For differential gene expression studies, often µi is the log-fold
change of gene expression between two conditions:

E [µi | Xi = x ] ≈ 0

I Instead model covariates as modulating:

P [µi = 0 | Xi = x ] or Var [µi | Xi = x ]



Conclusion

I As argued in a series of papers by Efron and co-authors,
Empirical Bayes presents a powerful framework for learning
from others.

I In this work: How can we apply EB in the presence of rich
side-information about each unit?

I Such side-information is ubiquitous and may be leveraged also
in other setting, e.g., in Multiple Testing (Lei and Fithian
[2016], I. and Huber [2017]).

I Key ideas: Cross-fitting, Stein’s Unbiased Risk estimate

I Manuscript: https://arxiv.org/abs/1906.01611 and
NeurIPS 2019

https://arxiv.org/abs/1906.01611


Thank you for your attention!


